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Abstract. We present a generalization of the blast-wave model by incorporating viscous effects
in the fluid velocity profile as well as in the Cooper-Frye freeze-out. We apply this model to
study the identified particles spectra and anisotropic flow at the Large Hadron Collider (LHC).
We show that this improved viscous blast-wave model leads to good description of the transverse
momentum distribution of particle multiplicities and elliptic as well as triangular flow. Within
this model, we estimate the shear viscosity to entropy density ratio η/s ' 0.24 at the LHC.

1. Introduction
The quark-gluon plasma (QGP) formed in relativistic heavy-ion collisions exhibit strong
collective behaviour and hence can be studied within the framework of relativistic
hydrodynamics. The hydrodynamical modelling of heavy-ion collisions suggests that the QGP
behaves like a nearly perfect fluid having an extremely small shear viscosity to entropy density
ratio η/s [1]. Apart from hydrodynamics, the collective behaviour of QGP can also be studied
within the so-called blast-wave model [2, 3, 4, 5, 6]. Here we generalize the blast-wave model to
include viscous effects by using a viscosity-based survival scale for initial geometrical anisotropies,
formed in relativistic heavy-ion collisions, to parametrize the radial flow velocity. We employ this
viscous blast-wave model to obtain the transverse momentum dependence of particle yields and
flow harmonics for the Large Hadron Collider (LHC). We fix the model parameters by fitting the
transverse momentum distribution of identified particle spectra. Subsequently, we demonstrate
that this leads to reasonably good agreement with transverse momentum dependence of elliptic
and triangular flow for various centralities. Within the present model, we estimate the shear
viscosity to entropy density ratio η/s ' 0.24 at the LHC.

2. The model
We work in the Milne co-ordinate system where, τ =

√
t2 − z2, ηs = tanh−1(z/t), r =√

x2 + y2, ϕ = atan2(y, x). The most important feature of the blast-wave model is the Hubble
like parametrization of transverse velocity, ur ∼ r, which is found to be in agreement with hydro
results [7]. In addition, we include angular anisotropy in the radial fluid velocity profile in the
transverse plane. The hydrodynamic fields are parametrized as [8]

T = Tf , ur = u0
r

R

[
1 + 2

∞∑
n=1

un cos[n(ϕ− ψn)]

]
, uϕ = uηs = 0, uτ =

»
1 + (ur)2, (1)



where R is the transverse radius of the fireball at freeze-out. The condition uµuµ = 1 leads to
the expression for uτ . In order to determine un, we use the fact that the initial geometrical
anisotropies eventually converts to anisotropies in the radial fluid velocity. The participant
anisotropies, εn, is defined in terms of the Fourier expansion for a single-particle distribution as

f(ϕ) =
1

2π

[
1 + 2

∞∑
n=1

εn cos[n(ϕ− ψn)]

]
, (2)

where ψn is the angle between the x axis and the major axis of the participant distribution. Next,
we determine the conversion efficiency of the initial geometrical eccentricity to final anisotropy
in the radial fluid velocity, i.e., un/εn.

We start from the dispersion relation for sound in a viscous medium, ω = csk + ik2 1
T
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where cs is the speed of sound in the medium, η is the coefficient of shear viscosity and
s = (ε + P )/T is the entropy density. Using a Fourier ansatz, one finds that the amplitudes of
the stress tensor harmonics, with momentum k, are attenuated by a factor [9]

δTµν(t, k) = exp
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ô
δTµν(0, k), (3)

where the oscillatory pre-factor has been ignored. Each harmonics is a damped oscillator and
form standing waves on the fireball circumference throughout the evolution, i.e., k = n/R. Note
that the presence of momentum squared in the exponent results in enhanced effect of viscosity
for the higher harmonics. Therefore, at freeze-out time tf , the wave amplitude reaction is [10]

δTµν |t=tf
δTµν |t=0

= exp
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where Tf is the freeze-out temperature. The above equation indicates a viscosity-based survival
scale for anisotropic structures formed by point like perturbations. The final radial fluid velocity
is due to initial geometrical perturbations and, in the absence of viscosity, the conversion
efficiency remains the same for all harmonics. Therefore, for a viscous medium, the conversion
efficiency must be proportional to the wave amplitude reaction,

un
εn

= α0 exp

ñ
−n2

Å
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s

ã
tf

R2Tf

ô
, (5)

where α0 is the constant of proportionality. The above equation, along with Eq. (1), leads to
the fluid velocity profile which is used in the freeze-out prescription to obtain particle spectra
and anisotropic flow coefficients.

3. Particle spectra and anisotropic flow
Hadron spectra can be obtained using the Cooper-Frye prescription for particle production [11]

dN

d2pTdy
=

1

(2π)3

∫
pµdΣµf(x, p), (6)

where dΣµ is the freeze-out hyper-surface and f(x, p) is the distribution function of the particles.
For a system close to equilibrium, f = f0 + δf where δf � f0. For the equilibrium distribution
function, f0, we use Fermi-Dirac statistics (a = +1) for baryons and Bose-Einstein statistics
(a = −1) for mesons. For the non-equilibrium part, we employ the Grad’s 14-moment
approximation with viscous corrections up to first-order [12]

δf1 =
f0f̃0
T 3

Å
η

s

ã
pαpβ∇〈αuβ〉. (7)



where f̃0 = 1−af0 and the angular brackets denote traceless symmetric projection orthogonal to
uµ. In the case of blast-wave model, the form of pαpβ∇〈αuβ〉 is explicitly calculated in Refs. [5, 8].

The anisotropic flow is defined as

vn(pT ) ≡

∫ π

−π
dφ cos[n(φ−Ψn)]

dN

dy pt dpT dφ∫ π

−π
dφ

dN

dy pt dpT dφ

, (8)

where Ψn is the event-plane angle for the n-th harmonic. Up to first order in viscosity [5],

vn(pT ) = v(0)n (pT )
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, (9)

where the superscript ‘(0)’ and ‘(1)’ denote quantities calculated using the ideal distribution
function and first-order viscous correction, Eq. (7), respectively.

4. Initial conditions and numerical results
We consider two identical relativistic nuclei with mass number A colliding with impact parameter
b. The transverse expansion of the fireball is obtained by using the unperturbed radial velocity,

ur ≡ dr

dτ
= u0

r

R
⇒

∫ R

r0

dr

r
=

∫ τf

0

u0
R
dτ ⇒ R = r0 exp

Å
u0 τf
R

ã
, (10)

where r0 = 1
2

(
b2 − 2 bR0

»
2 + b/R0 + 4R2

0

)1/2
and R0 = 1.25A1/3 fm is the radius of each

colliding nuclei [8]. In order to determine the freeze-out times for non-central collisions, we
employ the analytical result of Bjorken expansion ε ∝ τ−4/3. Assuming the initial thermalization
time and the freeze-out energy density to be same for all collisions, we get

τf = τf0

Å
εi
εi0

ã3/4
, (11)

where τf0 is the freeze-out time for most central collisions which is fitted to match the transverse
momentum distribution of particle multiplicities. The ratio εi/εi0 is the initial central energy
density for all centrality, scaled by its corresponding value in most central collisions. While the
Bjorken estimate for the absolute values of the freeze-out times is rather crude, we have used
the above equation to fix the freeze-out time for non-central collisions relative to that of the
most central ones. In the present case, it seems to be a reliable approximation as is evident
from Fig. 1. Therefore, in order to fit the transverse momentum spectra, the parameters that
needs to be fixed within the viscous-blast wave model are the freeze-out temperature Tf , the
freeze-out time for central collision τf0 and the maximum radial flow velocity u0. An interplay
between α0 in Eq. (5) and η/s is important to reproduce the transverse momentum dependence
of flow harmonics.

Figure 1 shows the transverse momentum distribution of pions, kaons, and protons spectra
for Pb+Pb collisions at

√
sNN = 2.76 TeV in (a): 0 − 5% and (b): 20 − 30% centrality. We

observe that, for a freeze-out temperature of 120 MeV, the spectra for π+ and K+ from the
viscous blast-wave model are in good overall agreement with the ALICE data [13]. On the
other hand, the freeze-out temperature for protons is considered to be 135 MeV in order to
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Figure 1. Transverse momentum distribu-
tion of π+, K+ and p multiplicities in Pb+Pb
collisions at

√
sNN = 2.76 TeV in two central-

ity ranges, (a): 0−5% and (b): 20−30%. The
symbols represent ALICE data [13] at mid-
rapidity and the lines correspond to viscous
blast-wave results.
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Figure 2. Transverse momentum depen-
dence of the anisotropic flow coefficients
vn(pT ) of charged hadrons, for n = 2 and
3, calculated at various centralities in Pb+Pb
collisions at

√
sNN = 2.76 TeV in the viscous

blast-wave model (lines) with η/s = 0.24 as
compared to the ATLAS data [14] (symbols).

fit the experimental data. Figure 2 shows our results for the vn(pT ), for various centralities,
in comparison with the ATLAS data [14]. For α0 = 0.4 and η/s = 0.24, we find fairly good
agreement with the experimental data for elliptic flow, v2(pT ), and triangular flow, v3(pT ), at
the LHC. We have used the root-mean square values of initial eccentricities, εn, obtained from
the Monte-Carlo Glauber model [15].
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