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Abstract. We determine the dependence of important parameters for critical fluctuations on
temperature and baryon chemical potential in the QCD phase diagram. The analysis is based
on an identification of the fluctuations of the order parameter obtained from the Ising model
equation of state and the Ginzburg-Landau effective potential approach. The impact of the
mapping from Ising model variables to QCD thermodynamics is discussed.

1. Introduction

Effective models for QCD thermodynamics [1, 2, 3] predict that the chiral phase transition
in QCD is of first order at large baryon chemical potential pg. At pp = 0, lattice QCD
simulations established that the transformation between the denser deconfined quark matter
phase at high temperature 7" and the low-7" hadronic matter phase is an analytic crossover [4].
As a consequence, the first-order phase transition line should terminate in a second-order chiral
critical point at some non-zero pp. A critical point is characterized through the growth of the
fluctuations of the order parameter o in the scaling region around it. In the thermodynamic
limit, these fluctuations diverge at the critical point with a given exponent of the diverging
correlation length £.

Experimentally, the phases of QCD matter are studied in heavy-ion collision experiments by
varying the beam energy and the system size. The quest for finding the conjectured critical
point in the QCD phase diagram has triggered an extensive effort culminating in the recently
completed beam energy scan phase I at RHIC [5, 6, 7] and being continued with the NA61
experiment at CERN-SPS and the phase II of RHIC’s beam energy scan program in the future.
Signaling the presence of a critical point, large event-by-event fluctuations [8, 9] of conserved
quantities such as electric charge or baryon number have been predicted. In reality, the actual
growth of the correlation length is limited by the finite size and, more importantly, lifetime of the
created system. Thus, higher-order non-Gaussian cumulants of the event-by-event distributions,
which depend more strongly on the growth of £ [10], are particularly interesting. These exhibit
certain patterns in the QCD phase diagram [11, 12] which are governed by the qualitative
behavior of universal critical parameters.



Assuming that QCD belongs to the same universality class as the three-dimensional Ising
model [2, 3] allows one to identify the expectation value of the order parameter of the chiral
phase transition with the order parameter in the spin model, the magnetization M. Fluctuations
of the order parameter in the scaling region can then be determined from the critical equation
of state for M. This enables us to study the behavior of the universal critical parameters in this
work. A similar approach was previously used in [13, 14] to construct an equation of state with
critical point for QCD matter.

In the following, we employ the linear parametric representation [15] of the critical equation
of state for the magnetization with critical exponents 5 =1/3 and § =5

M = MyR®9, (1)
r=R(1 - 6%, (2)
h = RPh(6). (3)

In this representation M (r, h), which is a function of reduced temperature r = (T'—T.) /T, with
spin model critical temperature T, and of reduced external magnetic field h = H/Hy, is expressed
in terms of the auxiliary variables R > 0 and 6 as M(R,6). The parametrization is uniquely
defined within —fy < 6 < 6y, where for h(6) = 36(1 — 20?/3), which is an odd function of 6,
one finds 0y = 1/3/2 as the relevant non-trivial root. My and Hj are normalization constants
of mass dimension one and three, respectively.

In spin model coordinates, the critical point is located at r = h =0 (R =0). At h =0, one
finds a first-order phase transition for » < 0 (R > 0 and 6 = +6)), while for r > 0 there is a
crossover (R > 0 and # = 0). The behavior of the order parameter in the scaling region is such
that M(r = 0,h) ~ |h|"/%sgn(h) and M(r,h — 0%) ~ |r|® for r < 0, which can be assured by
imposing conditions on My and Hy such that M is positive for h > 0 [13].

2. Order parameter fluctuations
The equilibrium cumulants quantifying the fluctuations of the order parameter in the scaling
region are determined from derivatives
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of M with respect to the external magnetic field at fixed r. Explicit expressions in terms of R
and 6 based on the linear parametric representation can be found in [16]. For given r and h,
these cumulants can then be determined by making use of Egs. (2) and (3).

The cumulants of the fluctuations of the order parameter can, likewise, be determined from
the corresponding probability distribution which depends on an effective action for the order
parameter of Ginzburg-Landau type [16, 10]. Including up to quartic interaction terms one finds
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In the scaling region, the cubic and quartic interaction strengths depend on the correlation
length as A3 = A3 T(T€)~3/2 and Ay = M\ (T€)~", where we neglected small anomalous scaling
dimension corrections in the cumulant expressions.



Strictly speaking, the expressions in Eqs. (5) - (7) are only valid in the scaling region as long
as the correlation length is small compared to the macroscopic length scale of the considered
system. Keeping this limitation in mind we can, nonetheless, identify the expressions for the
cumulants following from Eq. (4) with those in Egs. (5) - (7). This yields parametric expressions
for &, A3 and M4 in terms of the auxiliary spin model variables reading
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A3 =

A =2\ +2 c?, (10)

where C = (T%Hy/M§)'/*. The parameters A3 and Ay are found to be dimensionless and
independent of R which implies that they remain finite in the entire domain of the parametric
representation, while £ is of inverse mass dimension and diverges as R — 0.

According to Eq. (9), A3 is an odd function of h which is negative for h < 0. At h = 0, one
finds A3 = 0 for r > 0, while for r < 0 the dimensionless parameter approaches A3 — +7C / 61/4
as h — 0F. The qualitative behavior of the fourth-order cumulant ((60)*). is determined by the
behavior of the parameter difference 2A3 — A\y. As evident from Eq. (10), this difference is an
even function of h, which is positive for all 7 < 0 with maximum value (2A2 — \;) = 128 C?/27 at
h = 0. For r > 0, instead, one finds an interval —hg < h < hg in which the parameter difference
becomes negative with minimum value (202 — \4) = —4C?/9 at h = 0. The size of this interval
depends on the value of r and shrinks to zero, hg — 0, as 7 — 0T.

3. Parameter behavior in the QCD phase diagram
The parameters A3 and A4 in Egs. (9) and (10) are universal functions of the spin model variables
in the scaling region. However, the mapping from r and h to up and 7" in QCD thermodynamics
is not universal but strongly model-dependent. By relating the density difference from the
critical density in QCD to the magnetization M, this mapping has to satisfy, nonetheless, certain
constraints near the critical point based on universality class arguments. The QCD critical point
with baryon chemical potential ,ug) and temperature TP must be located at » = h = 0, positive
r-values must correspond to the QCD crossover regime and positive h-values have to be realized
in the denser phase.

In practice, these conditions can be assured by a simple linear mapping employing as auxiliary
variables

ApP ’ AT

=

The parameters AT and Aufgp relate scales in the spin model coordinate system with the
unknown size of the critical region in QCD. As by definition # > 0 in the QCD first-order phase
transition regime, one has to rotate 7 to obtain r satisfying the above condition. Since the
first-order phase transition line is expected to be bent, it is intuitive to perform this rotation
such that the r-axis lies tangentially to the transition line in the QCD critical point. The exact
orientation of the h-axis is, in contrast, less constrained. In line with [17], we opt for defining h
parallel to the T-axis in QCD. R

The corresponding behavior of the scaled parameter A\3/C and the scaled parameter difference
(202—)4)/C? in the QCD phase diagram is shown in Figures 1 and 2, respectively. Qualitatively,
the observed patterns follow the behavior with  and h described in Section 2, but appear tilted
to some extent given the particular mapping to QCD thermodynamics employed in [17].
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Figure 1. Scaled dimensionless parameter Figure 2. As in Figure 1 but for the
A3/C from Eq. (9) as a function of # and h, scaled dimensionless parameter difference in
cf. text for details. Eq. (10), (203 — \y)/C2.

4. Conclusions

We discussed the behavior of important parameters of the effective action near the QCD critical
point in line with the three-dimensional Ising model universality class. The shown results are
based on the mapping used in [17]. In future work, these parameters will serve as input for
dynamical studies of critical fluctuations in heavy-ion collisions, similar to [18, 19].
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