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Abstract. We proposed a method, using the expansion of the effective potential in a base of
harmonic functions, to study the Functional Renormalization Group (FRG) method at finite
chemical potential. Within this theoretical framework we determined the equation of state and
the phase diagram of a simple model of massless fermions coupled to scalars through Yukawa-
couling at the zero-temperature limit. Here, we use our FRG-based equation of state to describe
the superdense nuclear matter inside compact astrophysical objects. We calculated the mass-
radius relation for a compact star using the TOV equation, which was compared to other results.

1. Introduction
Compact astrophysical objects, such as neutron-, quark-, or hybrid stars are the most extreme,
high-density creatures of the present-day Universe. It is a challenging task to explore the inner
structure of these compact stars due to the lack of direct probes or measurements of their
interior. Recent spectroscopic radius measurements using X-ray data analysis [1] and even the
gravitational-wave discoveries [2, 3] may provide such constraints, which led us to develop more
reliable equation of state (EoS) of the superdense matter.

Modeling the high-density nuclear matter and providing its equation of state is still an
research field. On the other hand the success of the above task is shaded by the masquerade
problem, since different complex and sophisticated EoS result similar behavior and observables
of the compact celestial bodies [4]. This motivates us not only to provide perfect EoS, but
describe the phase structure of the cold and high-density nuclear matter [5].

The calculation of the equation of state in the high-density and zero temperature limit is
usually considered in the mean-field or one-loop approximation. Functional Renormalization
Group (FRG) method can extend this description in an exact way, taking into account the
effect of quantum fluctuations in the effective action of the system.

In this work we use the Wetterich-equation to compute the EoS and Litim’s regulator is
applied regulating the scale dependence [6]. The Local Potential Approximation (LPA) is used
to obtain the EoS for the ansatz containing a Yukawa-type interaction as described in Ref. [7].
We present there the calculated EoS which has a Maxwell-construction as an inner nature.

The calculated EoS is tested by solving the corresponding Tolman – Oppenheimer – Volkov
(TOV) equations and investigating the properties by the mass-radius relation, M(R) of compact
stars. Comparison of the FRG-based equation of state to other high-density zero-temperature
nuclear matter EoS and to the calculated M(R) by various models are given.



2. The FRG Method for a Yukawa-type Model
The functional renormalization group method is a general way to find the effective action of
a system. This formalism led us to calculate low-energy effective (observable) quantities by
gradual momentum integration of a theory defined at some high-energy scale, k. Since low-scale
effective quantities incorporate quantum fluctuations, using FRG at finite temperature one may
calculate the equation of state of the system including the quantum fluctuations as well.

Within the FRG framework the quantum n-point correlation function is calculated by the
gradual path integration. This can be achieved by introducing a regulator term, Rk in the
generator functional, Zk[J ], which acts as a mass term and suppresses modes below scale, k
as explained in Refs. [8, 9]. Thanks to this regulator term, the effective action becomes scale-
dependent, which scale dependence is given by the Wetterich-equation [10]
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k is the second derivative matrix of the effective action. The term ’STr’ stands for

the normal trace operation but includes a negative sign for fermionic fields and sums over all
indices. The low-scale (observable) effective action is computed by integrating the Wetterich-
equation (1), from the classical limit at some UV-scale k = Λ to the IR-scale k = 0, where
quantum effects are taken into account. The initial condition in this integration is the UV-scale
(classical) action Γk=Λ, which has to be chosen in a way, that the low-scale effective action
reproduces physical quantities, correctly.

Here, we use a simple Yukawa-type model with one bosonic and one fermionic degree of
freedom described by the bare action. This is described by the bare action at scale Λ,
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As we described in Ref. [7] this model has two phases: (i) in the symmetric phase the fermion
is massless, (ii) in the Spontaneous Symmetry Breaking (SSB) phase the fermion mass is g 〈ϕ〉.

To treat this model with the FRG method we need an ansatz for the effective action at
scale k. As a consequence of LPA, we choose the simplest possible one, where only the bosonic
effective potential depends on the scale:
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Note, neither wave function renormalization, nor the running of the Higgs coupling are taken
into account, however, both effects can be easily adapted into the present method.

The integrated Wetterich-equation (1) for this model can be rewritten after applying the
three-dimensional Litim regulator at finite temperature T and at finite chemical potential µ,
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where nB and nF are the Bose – Einstein and the Fermi – Dirac distributions, respectively
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In the case of T = 0 and µ > 0 the Bose – Einstein distribution does not give contribution, but
the Fermi – Dirac distribution reduces nF (ω)→ Θ(−ω) and this simplifies equation (4) to:
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The presence of the step function, Θ(ω), generates two different domains, where two different
differential equations evolve the potential in k. The boundary of these domains is called Fermi-
surface SF , which can be determined from requiring ωF (k, ϕ)|SF

= µ. The surface can be
characterized either by k = kF (ϕ) or by ϕ = ϕF (k) conditions. In our case these read as

kF =
√
µ2 − g2ϕ2 and ϕF = g−1

√
µ2 − k2. (7)

The surface SF , in terms of k and gϕ, is a circle with radius µ, and for µ = 0 it disappears.
The Fermi-surface divides the coordinate space into two parts; we will denote the high energy
regime by D>, the low energy regime by D<, where the following differential equations hold:
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and the solution is continuous at k = kF .
For the solution we need to use standard FRG techniques, e.g. with discretization or with

polynom expansion. The value of the potential at the boundary can be determined by cutting
out the Fermi-surface from the zero chemical potential solution. In Ref. [7] we introduced
a coordinate transformation which maps the circle-like Fermi-surface to a rectangular one,
while it keeps the symmetries of the differential equations. Applying this circle-to-rectangle
transformation and a harmonic expansion the Wetterich-equation can be solved numerically.

Since exact solution can be given in the mean field approximation, we took v = fπ, g = mN/v,
and λ = 3m2

σ/v
2 with the values mN = mσ = 0.938 GeV and fπ = 0.093 GeV. We choose the

chemical potential, µMF , close to the value of the first-order phase transition µMF ≈ 0.6177mN .

3. Results: Equation of State and Mass-radius Relation of Compact Stars
The potential solution provided by the FRG-method was found to converge quickly, where the
potential is convex. On contrary it converges slowly at the concave part and contains a native
Maxwell-construction, too. Comparison of the FRG-based EoS results to the mean-field and
one-loop approximation is plotted on Fig. 1 as p(µ) in the zero temperature limit and at finite
chemical potential. One can see, that FRG-based EoS is the softest, followed by the stiffer
one-loop and finally the mean field approximation result.

Figure 1. Equation of state p(µ), calculated from the functional renormalization group method.



We compared our FRG-based EoS results to some other EoS taken from Ref. [1], which are
typically used in compact star models. On the left panel of Fig. 2, we found, our EoS calculations
is the closest to the ’SQM3’ model predictions at the highest, but differs at lower energy-density
values. Right panel of Fig. 2 presents the calculated mass-radius diagram, M(R) based on the
Tolman – Oppenheimer – Volkov (TOV) equation combined together with the calculated FRG-
based EoS. All these were drawn together with other model predictions from Ref. [1]. However
these simple FRG-based EoS predict smaller but consistent compact stars with M < 1.5M� and
R < 8 km, by this way we could successfully validate our concept described in Ref. [7].

Figure 2. Comparison of different Equation of States and the corresponding M(R) diagram
for compact stars. Points were calculated by our method [7] and lines are from Ref. [1].

4. Summary
Using the Wetterich-equation the zero-temperature and high-density cold nuclear matter EoS
was calculated in the FRG-framework based on the method and concept described in Ref. [7].
The calculated equation of state and the M(R) diagram of compact stars were found to be
consistent with the ones listed in Ref. [1], however with smaller stellar mass M < 1.5M� and
radius R < 8 km.
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[5] P. Pósfay, G. G. Barnaföldi and A. Jakovác, PoS EPS-HEP2015 (2015) 369
[6] D. F. Litim, Phys. Rev. D 64, 105007 (2001)
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