$\psi(2S)$ Production at the LHC

Xiaojian Du and Ralf Rapp

Cyclotron Institute and Department of Physics & Astronomy, Texas A&M University, College Station, TX 77843-3366, USA

E-mail: xjdu@physics.tamu.edu, rapp@comp.tamu.edu

Abstract. We calculate the production of $\psi(2S)$ and the pertinent double ratio of its nuclear modification factor (R_{AA}) over that of the J/ψ in Pb-Pb collisions at the LHC. Based on a transport model with temperature dependent reaction rates, a sequential regeneration pattern emerges: the larger $\psi(2S)$ width, relative to the J/ψ , around and below the critical temperature, implies that most of the $\psi(2S)$ states are regenerated later in the evolution of the fireball. This has noticeable consequences for the transverse-momentum (p_T) spectra of the regenerated charmonia. While the total yield of $\psi(2S)$ meson remains smaller than those of J/ψ 's, their harder p_T spectra can produce a double ratio above unity for a $p_T > 3$ GeV cut, as applied by the CMS collaboration. A significant uncertainty in our calculations is associated with the values of the temperature where most of the $\psi(2S)$ regeneration occurs, *i.e.*, the quantitative temperature dependence of its inelastic width.

1. Introduction

Intense experimental efforts are ongoing to measure the production systematics of heavy quarkonia in heavy-ion collisions (HICs), to establish a robust benchmark for studying their modifications in hot and dense QCD matter [1, 2, 3, 4]. The sequence of bound states in the vacuum spectrum of heavy quarkonia provides a unique probe of how the basic QCD force evolves in the medium. In the charmonium sector, where extensive measurements of J/ψ production have revealed important information about its in-medium kinetics, the $\psi(2S)$ state is now becoming a rather hot topic. A strong $\psi(2S)$ suppression relative to the J/ψ has been observed both in proton-nucleus (pA) collisions at RHIC and the LHC [5, 6], and in nucleus-nucleus collisions [7] at the SPS, generally associated with final-state interactions together with a much smaller binding energy of the $\psi(2S)$. It was therefore rather intriguing when the CMS collaboration found an enhancement of the $\psi(2S)/J/\psi$ ratio in central Pb-Pb(2.76 TeV) collisions, relative to pp collisions [8]. More precisely, this enhancement was found in the kinematic range of forward-rapidities (1.6 < |y| < 2.4) and transverse momenta $p_T > 3 \text{ GeV}$, while it turns out to be suppressed around mid-rapidity and $p_T > 6.5 \text{ GeV}$. In Ref. [9] we suggested a sequential regeneration of J/ψ and $\psi(2S)$ states as a potential mechanism to understand this phenomenon within schematic model scenarios. In the present paper we expand on this work by revisiting the results within a more quantitative rate equation approach [10, 11, 12] (Sec. 2), discussing the double ratio and its main uncertainties in Pb-Pb(2.76 TeV) collisions (Sec. 3), and providing predictions at 5.02 TeV (Sec. 4). We conclude in Sec. 5.

2. Transport model for charmonia production

Our approach for quarkonium kinetics in HICs utilizes a rate equation,

$$\frac{\mathrm{d}N_{\Psi}}{\mathrm{d}\tau} = -\Gamma_{\Psi}(T) \left[N_{\Psi} - N_{\Psi}^{\mathrm{eq}}(T) \right] , \qquad (1)$$

which evolves the charmonium yields, N_{Ψ} ($\Psi=J/\psi, \psi(2S), \chi_c(1P)$) through an expanding fireball. The pertinent transport coefficients are: (a) the inelastic reaction rate $\Gamma_{\Psi}(T)$ in the quark-gluon plasma (QGP) and in hadronic matter. "Quasifree" dissociation is adopted as the dominant mechanism to break up J/ψ and $\psi(2S)$ states in the QGP where both have relatively small binding energies, $E_B \leq T$, while hadronic dissociation rate is calculated from a meson exchange model with $SU_f(4)$ flavor symmetry; (b) the thermal equilibrium limit $N_{\Psi}^{eq}(T)$ which controls the rate of regeneration. It is evaluated from the statistical model on either partonic or hadronic basis and includes non-equilibrium corrections due to a finite correlation volume and incomplete charm-quark thermalization [10].

To compute p_T spectra, we decompose the solution of the rate equation into two parts, one characterizing the primordial (direct) production and the other from regeneration of Ψ states. The Boltzmann equation is used to calculate the p_T -spectra of the primordial part via

$$\frac{\partial f(\vec{x}, \vec{p}, t)}{\partial t} + \vec{v} \cdot \frac{\partial f}{\partial \vec{x}} = -\Gamma_{\Psi}(\vec{p}, T) f(\vec{x}, \vec{p}, t)$$
(2)

where f is the phase space distribution of charmonia and $\vec{v} = \vec{p}/E_p$ their velocity. Escape effects are included by setting the rate to zero if a state exits the fireball boundary. The p_T -spectra of the regeneration component are evaluated from a blastwave description assuming thermal equilibrium,

$$\frac{\mathrm{d}N}{p_T \mathrm{d}p_T} \simeq m_T \int_0^R r \mathrm{d}r K_1 \left(\frac{m_T \cosh(\rho(r))}{T}\right) I_0 \left(\frac{p_T \sinh(\rho(r))}{T}\right)$$
(3)

where $m_T = \sqrt{p_T^2 + m^2}$ is the transverse mass and $\rho(r) = \tanh^{-1}(v(r, t, b))$ the transverse-flow profile of the fireball. Later times in the evolution lead to a harder spectra, as lower temperatures are overcompensated by the blue-shift due to larger flow. The blastwave spectra are normalized to the regeneration yield obtained from the p_T -independent rate equation. The pertinent R_{AA} 's are computed in the usual way as a ratio of AA and pp spectra, $R_{AA} = (N^{AA})/(N_{coll}N^{pp})$, scaled by the binary collision number, N_{coll} , obtained from the optical Glauber model.

The space-time evolution of the temperature is constructed from a simple ansatz for an isoand isentropically expanding fire cylinder volume, $V_{\text{FB}}(t)$. Using conservation of total entropy,

$$S_{\text{tot}} = s(T)V_{\text{FB}}(t) , \qquad (4)$$

together with a suitable equation of state for the entropy density, s(T) (for which we use a QGP quasi-particle and hadron-resonance gas connected through a mixed phase at $T_c=180 \text{ MeV}$), the time-dependent temperature is obtained for a given centrality by matching S_{tot} to the final-state hadron multiplicities.

3. Sequential regeneration in Pb-Pb(2.76 TeV)

Our results for the centrality dependence of the R_{AA} "double ratio", $R_{AA}(\psi(2S))/R_{AA}(J/\psi)$, as obtained from the kinetic rate equation are displayed in Fig. 1. They confirm the results of our previously published schematic-model study [9]; moderate quantitative deviations arise from the more restrictive model approach which intimately couples the suppression and regeneration yields. The basic trends of the CMS data in Pb-Pb(2.76 TeV) collisions for the two p_T cuts are still reproduced (left panel of Fig. 1), although the maximal enhancement in central collisions is

Figure 1. Charmonium production in Pb-Pb collisions at $\sqrt{s_{NN}}=2.76$ TeV within the kinetic rate equation approach. Left panel: centrality dependence of the double ratio $R_{AA}(\psi(2S))/R_{AA}(J/\psi)$ for $p_T>6.5$ GeV and |y|<1.6 (blue band) as well as $p_T>3$ GeV and 1.6<|y|<2.4 (red band), compared to CMS data (points with error bars) [8]. Right panel: p_T dependence of the individual J/ψ and $\psi(2S)$ R_{AA} 's for central collisions. A 10% shadowing is assumed.

not fully reproduced. Nevertheless, the marked increase of the double ratio beyond one remains a key signature of the sequential regeneration mechanism, whereby most of the $\psi(2S)$ are formed later in the evolution, thus being blue-shifted to p_T above 3 GeV (red band). The regenerated J/ψ are mostly concentrated at momenta $p_T \leq 3$ GeV, consistent with ALICE data [13]. On the other hand, for $p_T > 6.5$ GeV (blue band), the regeneration component has essentially faded away (being exponentially suppressed relative to the primordial power-law spectra), and the stronger suppression of the primordial $\psi(2S)$ relative to the J/ψ leads to a double ratio below one. The explicit p_T dependence of the $\psi(2S)$ and $J/\psi R_{AA}$ s for central Pb-Pb is depicted in the right panel of Fig. 1.

The largest contribution to the uncertainty bands in Fig. 1 is due to the choice of the average temperature, $\bar{T}_{\rm reg}$, at which the blast-wave expression is evaluated, representing the window where most of the regeneration occurs. From the time dependence of the regeneration yields we estimate $\bar{T}_{\rm reg}\simeq 160\text{-}165 \text{ MeV}$ for the $\psi(2S)$ and $\bar{T}_{\rm reg}\simeq 180\text{-}200 \text{ MeV}$ for the J/ψ [9] which can describe the ALICE data for $R_{\rm AA}^{J/\psi}(p_T)$ at 2.76 TeV [14]. We also varied the initial spectra by inclusion of a moderate Cronin effect with a broadening parameter of up to $a_{qN}=0.2 \text{ GeV}^2/\text{fm}$.

4. Predictions for $5.02 \,\mathrm{TeV}$

For our predictions at $\sqrt{s_{NN}}=5.02 \text{ TeV}$, we implement the following changes. The charged particle multiplicity, *i.e.*, S_{tot} , is increased by 22.5% [15], yielding an increase of ~7% for the initial temperature. Using experimental [16] and theoretical [17] results as guidance, the charm cross section in pp, $\frac{d\sigma_{c\bar{c}}}{dy}$, is increased by ~40%, from 0.65(0.59) mb to 0.92(0.84) mb at mid-(forward) rapidity, and likewise for charmonia. Their initial p_T spectra in pp are updated (somewhat harder than at 2.76 TeV), and a 10% additional shadowing is assumed. Finally, for the J/ψ blast-wave spectra, we found that a somewhat lower temperature range of T=179-181 MeV (representing a time window around the mixed phase) better describes the preliminary ALICE dimuon data for the J/ψ $R_{AA}(p_T)$ at 5.02 TeV as presented at this meeting [18].

The resulting R_{AA} double ratios for the different p_T cuts show a trend of moving closer together (see left panel of Fig. 2). Due to the increase in transverse flow, more regenerated J/ψ are pushed beyond the $p_T>3$ GeV thus suppressing the red band, while more $\psi(2S)$ are pushed

Figure 2. Same as Fig. 1 but for Pb-Pb collisions at $\sqrt{s_{NN}}$ =5.02 TeV.

beyond $p_T > 6.5 \text{ GeV}$ thus enhancing the blue band, cf. also the individual $R_{AA}(p_T)$'s in the right panel of Fig. 2.

5. Conclusions

In summary, the application of a kinetic rate equation approach to charmonium production in HICs suggests a scenario where $\psi(2S)$ states are regenerated significantly later in the fireball evolution than J/ψ mesons. This emerges from inelastic reaction rates which are significantly larger for the $\psi(2S)$ than the J/ψ in the later (hadronic) stages of the fireball. This "sequential regeneration" is a direct consequence of sequential suppression plus detailed balance. We have found that the phenomenological implications of this scenario can help to explain the puzzling observation of the CMS $\psi(2S)$ -to- $J/\psi R_{AA}$ double ratio.

Acknowledgments

This work is supported by the US National Science Foundation under grant no. PHY-1614484.

References

- [1] L. Kluberg and H. Satz, arXiv:0901.3831 [hep-ph].
- [2] P. Braun-Munzinger and J. Stachel, Landolt-Bornstein 23, 424 (2010) arXiv:0901.2500 [nucl-th].
- [3] R. Rapp, D. Blaschke and P. Crochet, Prog. Part. Nucl. Phys. 65, 209 (2010)
- [4] B. Chen, Y. Liu, K. Zhou and P. Zhuang, Phys. Lett. B 726, 725 (2013)
- [5] A. Adare et al. [PHENIX Collaboration], Phys. Rev. Lett. 111, no. 20, 202301 (2013)
- [6] J. Adam et al. [ALICE Collaboration], JHEP 1606, 050 (2016)
- [7] B. Alessandro et al. [NA50 Collaboration], Eur. Phys. J. C 49, 559 (2007)
- [8] V. Khachatryan et al. [CMS Collaboration], Phys. Rev. Lett. 113, no. 26, 262301 (2014)
- [9] X. Du and R. Rapp, Nucl. Phys. A 943, 147 (2015)
- [10] L. Grandchamp, R. Rapp and G. E. Brown, Phys. Rev. Lett. 92, 212301 (2004)
- [11] X. Zhao and R. Rapp, Phys. Rev. C 82, 064905 (2010)
- [12] X. Zhao and R. Rapp, Nucl. Phys. A 859, 114 (2011)
- [13] J. Adam et al. [ALICE Collaboration], JHEP 1605, 179 (2016)
- [14] B. B. Abelev et al. [ALICE Collaboration], Phys. Lett. B 734, 314 (2014)
- [15] H. Niemi, K. J. Eskola, R. Paatelainen and K. Tuominen, Phys. Rev. C 93, 014912 (2016)
- [16] A. Andronic et al., Eur. Phys. J. C 76, no. 3, 107 (2016)
- [17] M. Cacciari, S. Frixione, N. Houdeau, M. L. Mangano, P. Nason and G. Ridolfi, JHEP 1210, 137 (2012)
- [18] J. Adam et al. [ALICE Collaboration], arXiv:1606.08197 [nucl-ex].