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Abstract. Ratios of cumulants of net proton-number fluctuations measured by the STAR
Collaboration show strong deviations from a skellam distribution, which should describe thermal
properties of cumulant ratios, if proton-number fluctuations are generated in equilibrium and
a hadron resonance gas (HRG) model would provide a suitable description of thermodynamics
at the freeze-out temperature. We present some results on 6th order cumulants entering the
calculation of the QCD equation of state at non-zero values of the baryon chemical potential (µB)
and discuss limitations on the applicability of HRG thermodynamics deduced from a comparison
between QCD and HRG model calculations of cumulants of conserved charge fluctuations. We
show that basic features of the µB-dependence of skewness and kurtosis ratios of net proton-
number fluctuations measured by the STAR Collaboration resemble those expected from a
O(µ2

B) QCD calculation of the corresponding net baryon-number cumulant ratios.

1. Introduction
A major goal in current experimental and theoretical studies of the thermodynamics of strong
interaction matter is the exploration of its phase diagram. The hope is to find evidence for the
existence of a second order phase transition point – the chiral critical point (CCP) – located at
some value of the chemical potential, µcritB [1]. This would be the starting point for a line of first
order phase transitions at larger values of the baryon chemical potential µB.

At RHIC a dedicated research program – the beam energy scan (BES) – has been established
that seeks evidence for the existence and location of the CCP. By varying the beam energy
properties of matter in a regime of temperatures (T ) up to about three times the transition
temperature, Tpc ∼ 155 MeV [2, 3], and baryon chemical potential up to µB ' 3T can be probed.
It is generally expected that conserved charge fluctuations, which are generated close to, or at
the freeze-out temperature, Tf (µB), can provide insight into the existence and location of the
CCP. An important prerequisite for such studies, however, is to understand the thermodynamics
of hot and dense matter in the crossover region and, in particular, close to freeze-out in QCD.

In the following we will point out the importance of characterizing this regime in terms of
QCD rather than hadron resonance gas (HRG) model calculations, which are quite successful
in approximating QCD thermodynamics at sufficiently low temperatures, but definitely fail to
capture important aspects of QCD thermodynamics visible in conserved charge fluctuations at
temperatures T>∼160 MeV.

2. Energy density in the crossover region
At small values of µB the QCD transition is not a true phase transition but a smooth
transition from the low-T hadronic to the high-T partonic regime. This crossover transition
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Figure 1. Left: Energy density of QCD versus temperature obtained from lattice QCD
calculations (band) and HRG model calculations (line). Right: Freeze-out temperatures versus
baryon chemical potential determined by STAR (boxes) [7] and ALICE (triangle) [8], and
hadronization temperatures (circle) determined in Ref. [9]. The bands show lines of constant
pressure, energy density and entropy density, respectively. They have been determined from a
O(µ2B) Taylor expansion of the QCD partition function. Also shown is a parametrization of the
freeze-out line suggested by Andronic et al. (black line) [10] shifted to Tf (0) = 155 MeV.

does not happen at a well defined temperature. However, it can be characterized by pseudo-
critical temperatures, i.e. temperatures that reflect characteristic features of e.g. fluctuation
observables, which are guaranteed to converge to the true critical temperature in the chiral limit.
One such observable is the chiral susceptibility, χq, the derivative of the chiral condensate with
respect to quark mass. The location of the maximum of χq defines a pseudo-critical temperature.
This has been obtained in lattice QCD calculations, Tpc = 154(9) MeV [3].

In Fig. 1 (left) we show results for the energy density (ε) obtained from lattice QCD
calculations with physical strange and light quark masses [6]. The temperature range covered
by current uncertainties in Tpc corresponds to εc = (0.34 ± 0.16) GeV/fm3. Unfortunately,
this energy density range is still quite large. In fact, it covers practically all energy scales of
interest. While the central value corresponds to the close packing limit of nucleons with a radius
rn ' 0.8 fm, the lower limit is close to the energy density of nuclear matter (εnm ' 0.15 GeV/fm3)
and the upper limit is larger than the energy density inside a nucleon (εn ' 0.45 GeV/fm3).

Using the Taylor expansion of the QCD equation of state one can follow lines of constant
physics in the T -µB plane. In Fig. 1 (right) we show lines of constant pressure (p), energy density
(ε) and entropy density (s) obtained in order µ2B. Corrections to this are small for µB/T ≤ 2. The
three sets of curves, characterizing the current uncertainty band on Tpc, correspond to ε = 0.2,
0.35 and 0.56 GeV/fm3. Given the current uncertainties on Tpc it is not too surprising that all
results on freeze-out parameters (Tf (µB), µB) obtained from the analysis of particle yields at
the LHC [8] and RHIC [7] and even the rather large hadronization temperatures extracted in
Ref. [9] allow to state that ”hadronization and freeze-out of hadrons occur close to, or in the
QCD crossover region” (see Fig. 1 (right)) even though the temperatures in question are quite
different, e.g. ranging from 155 MeV to 165 MeV at µB = 0. They refer to environments, in
which hadronization and freeze-out may take place, that are quite different, e.g. the energy and
entropy density may differ by a factor 2. Lattice QCD calculations provide a wealth of other
observables, e.g. higher order cumulants of conserved charge fluctuations, that are sensitive
to the changes in physical properties of hot and dense matter that occur in this temperature
interval. Understanding these changes also is of importance for our understanding of freeze-out
conditions determined with the BES at RHIC as well as at the LHC.
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Figure 2. Left: Correlation between net baryon-number and net electric charge fluctuations
(χBQ11 ) versus temperature and the third moment of net baryon-number and net electric charge

fluctuations (χBQ31 ). The yellow band shows the crossover region defined by the uncertainty
of the pseudo-critical temperature Tpc = (154 ± 9) MeV. Right: same as on the left but for
correlations between net baryon-number and net strangeness fluctuations. These cumulants
have been normalized with the quadratic fluctuations of net baryon-number.

3. Cumulants of conserved charge fluctuations
At µB = 0 the energy density calculated in QCD as well as HRG models shown in Fig. 1 (left)
varies smoothly as function of temperature when traversing the crossover region. Even
quantitatively the latter is in quite good agreement with QCD calculations, although it has
been pointed out that the QCD energy density is systematically larger, which may be taken as
evidence for additional hadronic degrees of freedom contributing to bulk thermodynamics close
to Tpc [4, 5]. Nonetheless, HRG model calculations seem to describe bulk thermodynamics quite
well even at temperatures as large as T ∼ 180 MeV. In fact, the situation is similar even for
the specific heat [6]. Does this mean that the strongly interacting medium can be described in
terms of hadronic degrees of freedom in the entire crossover region and even above?

Conserved charge fluctuations and correlations between them provide plenty of evidence that
thermodynamics described in terms of hadronic degrees of freedom breaks down close to Tpc. In
particular, higher order cumulants are quite different from conventional HRG model calculations.
We show in Fig. 2 two examples of this. The left hand figure shows second and fourth order
cumulants of net baryon-number and net electric charge fluctuations,

χBQ11 =
∂2p/T 4

∂µ̂B∂µ̂Q

∣∣∣∣∣
~µ=0

, χBQ31 =
∂4p/T 4

∂µ̂3B∂µ̂Q

∣∣∣∣∣
~µ=0

, (1)

with µ̂X ≡ µX/T and ~µ = (µB, µQ, µS). In the infinite temperature, ideal quark gas limit the

net electric charge of 3-flavor QCD vanishes. Thus χBQ11 and χBQ31 will both approach zero while
these correlations will keep increasing exponentially in HRG model calculations with point-like,
non interacting hadrons.

At low temperature all hadronic degrees of freedom will either carry baryon number B = 0
or B = ±1. HRG model calculations thus give χBQ11 = χBQ31 . It is obvious from Fig. 2 (left)

that this relation no longer holds for T>∼150 MeV. Also χBQ11 starts deviating from HRG model
calculations at T>∼155 MeV. A similar pattern is found for second and fourth order cumulants
of net baryon-number and net strangeness correlations shown in Fig. 2 (right). Various other
combinations of 2nd and 4th order cumulants have been constructed that make it apparent
that HRG models with point-like non-interacting hadrons are not suitable for describing QCD
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Figure 3. Correlations between net baryon-number and net electric charge as function of µB/T
for three values of the temperature. Results from a QCD calculation at next-to-leading order
Taylor expansion are normalized to a HRG model calculations truncated at the same order.

thermodynamics at temperatures T>∼Tpc [11]. In fact, this also has been verified for net baryon-
number and net charm correlations [12] which strongly suggests that also the thermodynamics
of open charm baryons cannot be described by HRG models above Tpc.

A consequence of the early deviation of 4th order cumulants from corresponding HRG
calculations also is that differences between QCD and HRG calculations increase with increasing
value of the chemical potential and will show up already in 2nd order cumulants. This is shown
in Fig. 3 (left) for the correlation between net baryon-number and net electric charge evaluated
up to O(µ2B),

χBQ11 (T, µB) = χBQ11 +
1

2
χBQ31 µ

2
B . (2)

Obviously QCD and HRG calculations differ significantly at µB/T = 2 already for T>∼155 MeV.

4. Taylor expansions for skewness and kurtosis ratios
In HRG models with point-like non-interacting hadrons the distribution of net baryon number
fluctuations is given by a skellam distribution. This leads to quite simple properties of higher
order cumulants. In particular, the skewness ratio SBσ

3
B/MB and the kurtosis ratio κBσ

2
B should

both be equal to unity at all values of µB. However, as discussed in the previous section this
cannot be expected to hold in QCD at temperatures above Tpc where cumulants start to deviate
significantly from HRG model calculations. The distribution of net baryon number fluctuations
thus is e.g. not a simple skellam distribution. QCD calculations of the skewness and kurtosis
ratios yield

SBσ
3
B

MB
=

χB3 (T, µB)

χB1 (T, µB)
=
χB4 + s1χ

BS
31 + q1χ

BQ
31

χB2 + s1χBS11 + q1χ
BQ
11

+O(µ2B) ≡ rB,031 + rB,231 µ̂2B +O(µ4B) (3)

κBσ
2
B =

χB4 (T, µB)

χB2 (T, µB)
=
χB4
χB2

+O(µ2B) ≡ rB,042 + rB,242 µ̂2B +O(µ4B) , (4)

with s1 and q1 denoting the leading order expansion coefficients of µS and µQ in terms of µB that
result from imposing the strangeness neutrality constraint MS = 0 and a fixed electric charge
to baryon number ratio, MQ/MB = 0.4. Results for the leading order expansion coefficients,
defined in Eqs. 3 and 4, are shown in Fig. 3 (right). While at T ' 150 MeV the kurtosis ratio
at µB = 0 is still close to unity, κBσ

2
B ' 0.9, it strongly deviates from unity for T ' 160 MeV,
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Figure 4. Left: The next-to-leading order (NLO) expansion coefficients of the skewness and
kurtosis ratios at fixed temperature as introduced in Eqs. 3 and 4. Right: The ratio of the NLO
expansion coefficients taking into account also a NLO expansion in terms of temperature along
the line of constant pressure, energy density or entropy density, respectively.

giving κBσ
2
B ' 0.6. In view of these differences it also is not obvious that the skewness and

kurtosis ratios will still coincide in a QCD calculation. However, as can be seen from Eqs. 3 and
4 at µB = 0 the leading order results will always be identical, if µQ = µS = 0, irrespective of
the size of deviation from the skellam limit. For non-zero µQ and µS the skewness and kurtosis
ratios will differ. Nonetheless, as can be seen from the insertion in Fig. 3 (right) this difference is
small for all temperatures of interest. QCD thus predicts that the skewness and kurtosis ratios
will approach each other in the limit µB → 0. This, however, changes for |µB| 6= 0.

At next-to-leading order (NLO) the expansion coefficients rB,231 and rB,242 need to be calculated.
This is computationally difficult, because 6th order cumulants need to be evaluated. Current
results for rB,231 and rB,242 are shown in Fig. 4 (left). Although errors are still large, it is apparent

that these expansion coefficients are negative for 150 MeV<∼T<∼175 MeV and that rB,242 is about

three times larger than rB,231 . This has been reported by us earlier [13]. It thus is expected that
the skewness and kurtosis ratios, which are almost identical at µB = 0, will start to differ for
µB > 0. As the expansion coefficients are negative, κBσ

2
B will drop faster than SBσ

3
B/MB.

An additional subtlety in the analysis of the µB-dependence of the skewness and kurtosis
ratios is that these need to be evaluated at a (freeze-out) temperature that changes with µB.
This requires an additional Taylor expansion of the ratios introduced in Eqs. 3 and 4. Assuming
that freeze-out happens along a line of constant physics described either by constant pressure,
energy density or entropy density, i.e. the lines shown in Fig. 1, these contributions can be
evaluated using the Taylor expansion of the pressure [16], changing rB,2nm to rB,fnm . It turns out that

the additional contributions increase the ratio rB,f42 /rB,f31 somewhat as shown in Fig. 4 (right).

5. The STAR data on net proton-number skewness and kurtosis ratios
The STAR collaboration has measured the skewness ratio SPσ

3
P /MP and kurtosis ratio κPσ

2
P

of net proton-number fluctuations [14, 15]. Obviously these cumulant ratios cannot directly be
compared to QCD results on net baryon-number fluctuations. Already the strong sensitivity
on the transverse momentum range used in the analysis, which is clearly visible in the data
published so far by the STAR Collaboration (Fig. 5 (left) and (right), respectively), emphasizes
that there is need for better understanding of various effects that enter the experimental analysis
of higher order cumulants. Nonetheless, it is striking that the published as well as the new
preliminary data on skewness and kurtosis ratios resemble all the features we expect to show up
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Figure 5. Skewness and kurtosis ratios of net proton-number fluctuations measured by the
STAR collaboration in transverse momentum intervals 0.4 GeV < pt > 0.8 GeV (left) and
0.4 GeV < pt > 2.0 GeV (right), respectively. Data are plotted versus the ratio of mean
(MP ) over variance (σ2P ) of the net proton-number distribution, which also is measured at
various beam energies. Curves show combined fits to the data for MP /σ

2
P < 0.9 or equivalently√

sNN ≤ 19.6 GeV/fm3. They are constraint by demanding SPσ
3/MP = κPσ

2
P at MP /σ

2
P = 0.

in equilibrium thermodynamics of QCD. The ratios (i) are smaller than unity, (ii) they seem to
coincide in the limit µB → 0, (iii) they have a negative slope with increasing µB and (iv) the
kurtosis ratio drops faster than the skewness ratio. In fact, a combined quadratic fit to these
ratios, performed for all data obtained at beam energies

√
sNN ≥ 19.6 GeV/fm3 and imposing

the constraint rB,042 /rB,031 , yields for the ratio of slope parameters rB,f42 /rB,f31 ∼ 4± 2, which is in
good agreement with the NLO QCD result shown in Fig. 4 (left). These fits are shown in Fig. 5.
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