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Abstract. A review of the most recent results on QCD thermodynamics, obtained from lattice
simulations, is presented. Particular focus is devoted to fluctuations of conserved charges and
to their comparison with the experimental results from RHIC Beam Energy Scan.

1. Introduction
The deconfined phase of Quantum Chromodynamics (QCD), the Quark-Gluon Plasma (QGP)
can be created in the laboratory in heavy ion collision experiments currently running at RHIC
(Brookhaven National Laboratory) and at the LHC (CERN). These experiments allow to explore
the QCD phase diagram and to extract the properties of this new phase of matter. The QGP
turns out to be the most ideal fluid ever observed, which led to the idea that the system created in
the collisions is strongly interacting and cannot be studied by means of perturbative techniques.

Lattice simulations are the best first-principle tool to address QCD in its non-perturbative
regime. Given enough computer power, both statistical and systematic uncertainties can be kept
under control. Due to a steady and continuous improvement in computer resources, numerical
algorithms and our physical understanding which manifests itself in physical techniques (e.g. the
Wilson-flow scale setting introduced in Ref. [1]), the lattice results which are being produced
today reach an unprecedented level of accuracy, which allows a quantitative comparison to
experimental observables for the first time.

The region of the phase diagram which can be explored experimentally corresponds to values
of temperature T and chemical potential µB for which perturbative techniques are not applicable:
this endorses lattice QCD as the main tool to investigate the properties of the matter created in
heavy ion collisions. In the low temperature phase, interacting hadronic matter in the ground
state can be well described in terms of a gas of non-interacting hadrons and resonances. Indeed
the Hadron Resonance Gas (HRG) model, based on this idea, yields a very good description of
the lattice results for QCD thermodynamics.

The availability of precise experimental data, as well as the accuracy of the lattice QCD
results, allows a new synergy between fundamental theory and experiment, which leads to the
determination of several properties of the QGP from first principles.

2. QCD equation of state
The QCD equation of state at zero chemical potential is now known with high accuracy:
continuum extrapolated results are available for the pressure, energy density, entropy density,



interaction measure and speed of sound of a system of 2+1 quark flavors with physical quark
masses [2, 3, 4]. A selection of these results is shown in the left panel of Fig. 1, in which curves
from the WB collaboration obtained with the 2stout action (gray) are compared to those from
the HotQCD collaboration obtained with the HISQ action (colored). The agreement between
the two sets of curves is a fundamental test of the validity of the lattice approach to solve QCD.
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Figure 1. Left: Scaled pressure, entropy density and interaction measure as functions of the
temperature. The gray curves have been obtained by the WB collaboration with the 2stout
action [2, 3], the colored ones by the HotQCD collaboration with the HISQ action [4]. Right:
Taylor coefficients c0, c2, c4 and c6 as functions of the temperature from the WB collaboration,
obtained from imaginary µB simulations. The data are continuum extrapolated [14, 15, 16].

Lattice QCD simulations at finite chemical potential are unfortunately not possible, due to
the sign problem. Different methods have been proposed in order to circumvent the problem:
here I will focus on the Taylor expansion of thermodynamic observables around µB = 0 [5, 6]
(which can be considered as a truncated version of the multiparameter reweighting technique
[7]) and on the analytical continuation from imaginary chemical potentials [8, 9, 10].

The Taylor expansion of the pressure in powers of µB/T can be written as:
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The coefficients ci(T ) in the above expansion can be calculated on the lattice. Several results
exist in the literature: c2...c6 have been calculated long ago on coarse lattices and with heavier
than physical quark masses [11]; continuum extrapolated results for c2 at the physical quark mass
were published for the first time in Ref. [12]; results for c4 at finite lattice spacing were shown in
Ref. [13]. In Fig. 1 right I show the new results for c2, c4 and c6 from the WB collaboration, in
the continuum limit and for physical quark masses. These results have been obtained with the
method of analytical continuation from imaginary chemical potential [14, 15, 16]. It is important
to notice that the chemical potentials µB, µS and µQ are not independent of each other: µS
and µQ are both functions of T and µB, such that the following experimental conditions are
satisfied:

ρS = 0, ρQ = 0.4ρB, (2)

where ρS , ρQ and ρB are the densities of strangeness, charge and baryonic number, respectively.
The coefficients c2...c6 in Eq. (1) are full derivatives with respect to µB/T , namely they take
into account the dependence of µS and µQ on µB and T .



3. QCD phase diagram
It is known from lattice QCD simulations that the deconfinement transition at µB = 0 is an
analytical crossover [17], taking place over a broad range of temperatures around Tc ' 155 MeV
[18, 19, 20, 21]. The transition temperature is usually defined by locating the inflection point of
relevant observables. As the chemical potential is increased, the position of the inflection point
changes: it is possible to express the µB−dependence of Tc in the following way:

Tc(µB)

Tc(µB = 0)
= 1− κ

(
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)2

+ λ

(
µB

Tc(µB)

)4

+ ... . (3)

The coefficient κ is the curvature of the phase diagram. By looking at the chiral condensate,
chiral susceptibility and strange quark susceptibility the WB collaboration finds a value of
κ = 0.0149 ± 0.0021 [22]; the strange quark chemical potential is fixed to impose strangeness
neutrality. The phase diagram corresponding to this value of κ is showed in the left panel of Fig.
2, together with a compilation of freeze-out parameters obtained with different methods. The
shaded band indicates the broadness of the QCD transition, while the dark blue band shows
that it is possible to find a value for Tc with great accuracy when looking at a single observable
(in this case the chiral condensate). Similar results have been obtained recently by two other
groups: P. Cea et al. obtain a value of κ = 0.020(4) by fixing µs = µl [23], while Bonati et al.
find κ = 0.0135(20) both with µs = 0 and µs = µl [24]. In the right panel of Fig. 2, the phase
diagram with the curvature from Ref. [23] is shown.
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Figure 2. Left: The phase diagram based on the µB−dependent Tc from the chiral condensate,
analytically continued from imaginary chemical potential [22]. The blue band indicates the width
of the transition. The shaded black region shows the transition line obtained from the chiral
condensate. The widening around 300 MeV is coming from the uncertainty of the curvature and
from the contribution of higher order terms, thus the application range of the results is restricted
to smaller values. We also show some selected non-lattice results: the Dyson-Schwinger result
[25], and the freeze-out data of Refs. [26]-[32]. Right: analogous plot from Ref. [23].

4. Fluctuations of conserved charges
Fluctuations of conserved charges are the most prominent example of direct comparison between
lattice QCD results and experimental data: they are fixed at the chemical freeze-out, therefore
they can be used to gain information about this point in the evolution of a heavy ion collision
[33, 34].



The definition of fluctuations is as follows:

χBQS
lmn (T, µB) =

∂l+m+np/T 4

∂(µB/T )l∂(µQ/T )m∂(µS/T )n
(4)

and they can be related to the cumulants of the event by event distribution of the corresponding
net conserved charge measured in experiments. In particular, it is possible to define volume-
independent ratios which only depend on T and µB:

M/σ2 = χ1/χ2 Sσ3/M = χ3/χ1

Sσ = χ3/χ2 κσ2 = χ4/χ2 (5)

where M is the mean of the experimental distribution, σ the variance, S the skewness and κ the
kurtosis. The lattice QCD results for the above ratios will depend on T and µB: by comparing
them to the experimental value it is therefore possible to extract the freeze-out temperature and
chemical potential.

In the comparison between a first principle calculation in thermal equilibrium and the data
from a heavy ion collision, we have to make sure that the experiment is measuring thermal
fluctuations as well, and that other spurious sources of fluctuations are under control. The
system created in a heavy ion collision is a canonical ensemble, in which charges like baryon
number or electric charge are strictly conserved. However, if we look at a limited part of this
system (which can be done due to the limited acceptance of the detector), we can treat it as
a Grand Canonical Ensemble [35]. There are several effects which may generate non-thermal
fluctuations: fluctuations in the initial volume, protons coming from the interaction with the
beam pipe, effects due to cuts in rapidity and transverse momentum, and so on. A variety of
effects has been identified and studied in the literature [36]-[42].

The WB collaboration showed that, by analyzing the fluctuations of electric charge and
baryon numbers separately [44, 45], a consistency is found in the chemical freeze-out µB values
[43], with the freeze-out temperature having an upper limit of Tch ≤ 151±4 MeV. More recently,
the authors of Ref. [46] were able to obtain both the freeze-out temperature and the curvature
of the freeze-out line. The value of the freeze-out temperature (Tf = (147 ± 2) MeV) is in
agreement with the one obtained in Ref. [43]. The WB collaboration performed a combined
fit of χ1/χ2 for electric charge and proton number and found the freeze-out temperature and
chemical potential for the highest RHIC energies. These preliminary results are shown in the left
panel of Fig. 3, together with the isentropic lines which match the freeze-out data, the contours
for constant mean/variance of net-electric charge and net-baryon numbe4r from the lattice, and
the results of a previous analysis based on the HRG model [32].

Strangeness is still missing from the picture mainly due to the lack of experimental data for
the fluctuations of (multi-)strange baryons. Therefore, it is important to have a first-principle
determination of the strangeness freeze-out temperature. The ALICE data for particle yields and
ratios seem to indicate a tension between the freeze-out temperatures in the light and strange
sectors [48, 49]. Several explanations have been proposed for this result [50]-[57], but so far none
has been validated or excluded. A result from first principles would finally resolve this issue.

So far, the only feasible experimental measurement of fluctuations of strange particles is the
net-kaon fluctuations, which will be finalized soon by the STAR collaboration. In Ref. [58]
we showed that it is possible to isolate the kaon fluctuations in lattice QCD simulations: the
experimental kaon distribution contains both primordial kaons and those produced by resonance
decays. By using an HRG model with resonance decays, we showed that the χ2/χ1 of the
full kaon distribution is effectively identical to the one obtained for primordial kaons in the
Boltzmann approximation. The latter is given by a simple formula:

χK
2

χK
1

=
cosh(µ̂S + µ̂Q)

sinh(µ̂S + µ̂Q)
(6)
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Figure 3. Left: Preliminary results for the freeze-out parameters from the WB collaboration.
The colored full and dashed lines are the contours at constant mean/variance ratios of the net
electric charge and net baryon number from lattice simulations. The contours that correspond
to STAR data intersect in the freeze-out points of Ref. [32]. The red band is the QCD phase
diagram shown in Fig. 2. Also shown are the isentropic contours that match the chemical
freeze-out data [14, 15, 16]. Right: Example of comparison between χK

2 /χ
K
1 from lattice QCD

and the preliminary STAR result at
√
s= 200 GeV shown at the Strangeness in Quark Matter

2016 conference [47]. The blue band corresponds to the statistical error, the orange one shows
statistical and systematic errors summed in quadrature.

which can be easily calculated on the lattice. An example of lattice-to-experiment comparison for
this observable is shown in the right panel of Fig. 3. When the STAR data for this observable are
finalized, it will be possible to extract the freeze-out parameters for kaons from first principles.

5. Conclusions
In conclusion, lattice QCD simulation have reached a new level of accuracy in the last few years.
Precise results are available for QCD thermodynamics at zero and small chemical potentials,
which allow a quantitative comparison with experimental results for the first time. This will
eventually enable us to achieve a comprehensive understanding of bulk properties of QCD matter
from first principles.
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