Measurement of Longitudinal Single-Spin Asymmetry for *W* Boson Production at STAR

Jinlong Zhang 1,2 for the STAR Collaboration

¹Shandong University ²Lawrence Berkeley National Laboratory

INPC 2016, Adelaide, Australia September 11-16, 2016

Measurement of longitudinal SSA for W boson at STAR

Flavor Separation of Proton Spin

DSSV Global Analysis

Polarized PDFs:

 $\Delta f(x) =$

- $< S_p >= rac{1}{2} = rac{1}{2}\Delta\Sigma + \Delta G + L$ (Jaffe-Manohar, 1990)
- $\begin{aligned} \Delta \Sigma &= \int (\Delta u + \Delta d + \Delta s \\ &+ \Delta \bar{u} + \Delta \bar{d} + \Delta \bar{s}) dx \end{aligned}$
- $\Delta\Sigma^1_{0.001}\sim 30\%$ from DIS data
- Flavor separated contributions are not well constrained yet

Why W? — Unique Probe to Sea Quark Polarization

- V-A structure of the weak interaction leads to perfect spin separation
- Complementary to SIDIS, free of fragmentation uncertainties
- Rapidity dependence separates sea quarks from valence quarks

$$A_{L} = \frac{\sigma_{+} - \sigma_{-}}{\sigma_{+} + \sigma_{-}} \qquad A_{L}^{W^{+}} \propto \frac{-\Delta u(x_{1})\overline{d}(x_{2}) + \Delta\overline{d}(x_{1})u(x_{2})}{u(x_{1})\overline{d}(x_{2}) + \overline{d}(x_{1})u(x_{2})}$$

Main subsystems used in this analysis

- TPC, Time Projection Chamber, $|\eta| < 1.3$
- BEMC, Barrel Electromagnetic Calorimeter, |η| < 1.0</p>
- EEMC, Endcap Electromagnetic Calorimeter, 1.1 < |η| < 2</p>

STAR Longitudinal pp500			
Run	L (pb ⁻¹)	Р	$P^2L(pb^{-1})$
2009	12	0.38	1.7
2011	9.4	0.49	2.3
2012	77	0.56	24
2013	246.2	0.56	77.2

STAR: PRL 106, 062002(2011) STAR: PRL 113, 072301(2014)

- After 2009, STAR collected large datasets in 2011 and 2012 with improved beam polarization
- The 2013 data by far surpass the total of previous years

$W \rightarrow e \nu$ Candidates

$W \rightarrow e + \nu$ Candidate Event:

- Isolated high p_T track pointing to isolated cluster in calorimeter
- *p_T* imbalance due to the undetected neutrino

QCD Background Event:

- Several tracks pointing to energy deposit in several towers
- *p_T* sum is balanced by di-jet, no large ''missing energy''

Selection Cuts

- Isolation ratio $E_{2 \times 2}/E_{4 \times 4}$ > 95%
- Isolation ratio $E_T^e/E_T^{\Delta R < 0.7} > 88\%$

 $\vec{p_T}^{bal} =$ $\vec{p_T}^e + \sum_{\Delta R > 0.7} \vec{p_T}^{jets}$

- Signed P_T -balance = $\frac{\vec{p_T} \cdot \vec{p_T} \cdot \vec{p_T}}{|\vec{p_T} \cdot \vec{e}|}$ > 14GeV
- away E_T < 11GeV</p>

- Candidate electron E_T distribution
- Jacobian Peak Pronounce as cut applied

Background Estimation

- W signal
 - "Jacobian Peak"

Electroweak Background:

Determined from Monte-Carlo simulation.

- $\blacksquare \quad \mathsf{Z} \to \mathsf{ee} \mathsf{MC}$
- $W \rightarrow \tau \nu MC$

Primary Background:

Satisfy W selection cuts but contain jets escaping detection at $\eta < -1$ and $\eta > 2$.

- Second EEMC Estimate non-existent "east" EEMC background based on real west EEMC
- Data-driven QCD

STAR

- First Measurement of lepton pseudorapidity dependent W[±] longitudinal single-spin asymmetry
- W^+ A_L consistent with theoretical predictions, indicating consistent results with SIDIS for $\Delta \bar{d}$
- $W^- A_L$ larger than the predictions for $\eta_e < 0$, prefer a more positive $\Delta \bar{u}$ than measured in SIDIS

STAR, PRL113,072301(2014)

Impact on $\Delta \bar{u}(x)$ and $\Delta \bar{d}(x)$ from NNPDF

NNPDF, Nucl.Phys.B887,276-238(2014)

- STAR 2011+2012 results provide constraints on $\Delta \bar{u}$, $\Delta \bar{d}$
- $\Delta \bar{u}$ central value in 0.05 < x < 0.2 shift to **positive**

E.Aschenauer, et.al. arXiv:1304.0079

- STAR 2012 results provide significant constraints on $\Delta \bar{u}$, $\Delta \bar{d}$
- $\int_{0.05}^{1} \Delta \bar{u} dx$ shift to positive

- Most precise measurement of W A_L
- Expect to further constrain $\Delta \bar{u}$, $\Delta \bar{d}$ distributions

STAR 2013 W^{\pm} A_L Preliminary Results

STAR 2013 W A_L data arXiv:1304.0079

- Most precise measurement of W A_L
- Expect to further constrain $\Delta \bar{u}$, $\Delta \bar{d}$ distributions
- Consistent with STAR 2011+2012 results with 40% smaller uncertainty

- Most precise measurement of W A_L
- Expect to further constrain $\Delta \bar{u}$, $\Delta \bar{d}$ distributions
- Consistent with STAR 2011+2012 results with 40% smaller uncertainty
- Consistent with PHENIX $W/Z A_L$ measurements

PHENIX, PRD93,051103(2016)

- Measurement of A_L of W boson production in polarized pp collision provides unique probe to flavor-separated sea quark polarization
- Most precise measurement of $W^{\pm} A_L$ from preliminary STAR 2013 data released here
- Significantly constrain $\Delta \bar{u}$, $\Delta \bar{d}$ distributions
- Data prefer $\Delta \bar{u} > \Delta \bar{d}$, opposite to the difference between unpolarized sea quark distributions