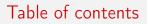
New Readout Schemes ArgonCube Collaboration Meeting

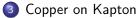
Damian Goeldi

AEC, LHEP, University of Bern


27.08.15

1 / 22

27.08.15


Damian Goeldi (University of Bern)

New Readout Schemes

Future Plans

ub

Image: Constraint of the second secon

Damian Goeldi (University of Bern)

New Readout Schemes

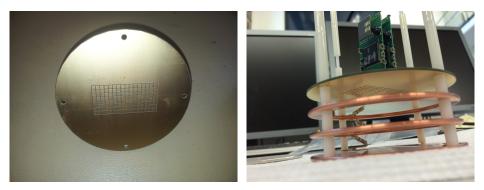
Introduction

- Several new readout schemes proposed
- Some just alterations of existing ones
- Some completely new
- Some require new technologies
- Some create a need for new readout electronics

Motivation

- Sensing wires did a great job in smaller detectors
- BUT they have many drawbacks:
 - Prone to microphonics
 - Only projections of X and Y (or U,V,W)
 - Induce ambiguities in reconstruction
 - Mechanically demanding (like a piano)
 - Problems increase with detector size

Damian Goeldi (University of Bern)


27.08.15 4 / 22

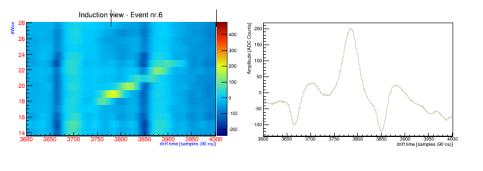
Pixels

Pixels

- Copper pads on FR4 (standard PCB)
- Connected to back through vias
- LARASIC preamp directly on back
- Size comparable to wire pitch

Pixel prototype

Pixels



Damian Goeldi (University of Bern)

New Readout Schemes

Pixels

First pixel event

 u^{b} UNIVERSITÄT

Damian Goeldi (University of Bern)

New Readout Schemes

3 7 / 22 27.08.15

ъ

(王) (王)

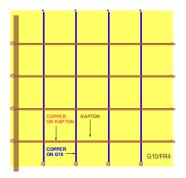
Pixels

Pixels

- Proof of concept
- + No ambiguities
- + Standard PCB technology
- + Rugged
 - Increase of number of readout channels by a magnitude of one or two

u^b

8 / 22

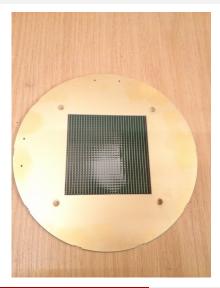

27.08.15

- Need for new type of readout electronics

Damian Goeldi (University of Bern)

Copper on Kapton

- Simply put: Charge sharing wire plane on PCB
- Bottom plane: standard copper tracks on FR4
- Top plane: copper tracks on Kapton tracks on top of first plane


 \boldsymbol{u}^{t}

UNIVERSITÄT

Our prototype

- Slightly changed layout
- \bullet Copper tracks on both sides of a flex PCB (50 $\mu m)$
- Plane on the back works in induction mode
- Easier to manufacture
- Using LARASIC preamps
- Not yet tested

Copper on Kapton prototype "Wire" plane

Damian Goeldi (University of Bern)

New Readout Schemes

27.08.15 11 / 22

Copper on Kapton prototype TPC

Damian Goeldi (University of Bern)

New Readout Schemes

27.08.15 12 / 22

Copper on Kapton

- Test will follow shortly
- + Rugged
- + Same number of readout channels as standard wires
- + Connectorless interfacing to electronics possible
 - Projection ambiguities
 - Advanced technology

Damian Goeldi (University of Bern)

u^b

13 / 22

Multiplexing

- Pixelized readouts have an extreme number of readout channels
- Signal feedthroughs only accommodate a limited number
- \Rightarrow Multiplexing
 - Genetic
 - Digital
 - Region of interest (ROI)

Damian Goeldi (University of Bern)

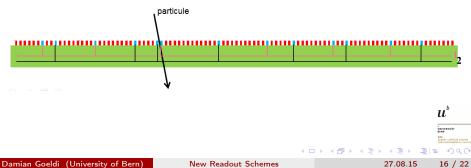
New Readout Schemes

u^b

14 / 22

Genetic multiplexing

- Multiplexing erases information
- \Rightarrow Find redundant information
 - Strip detector: Tracks often hit two strips simultaneously
 - What if we connect multiple strips to one readout channel such that no neighbouring strips are connected to the same readout channel?
- $\Rightarrow \binom{n}{2} = \frac{n(n-1)}{2} + 1$ strips for *n* readout channels
 - Handshake problem: number of unique pairs among *n* people


Damian Goeldi (University of Bern)

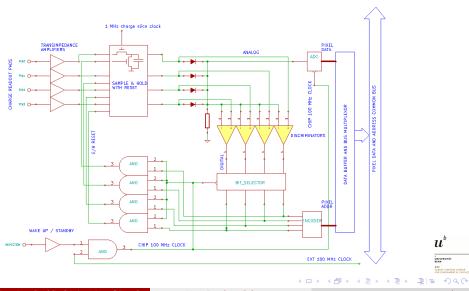
u^b

15 / 22

Genetic multiplexing

- Passing particle hits two strips
- Strips activate unique combination of two readout channels
- Demultiplex readout channel pairs
- \Rightarrow Position on detector

Genetic multiplexing

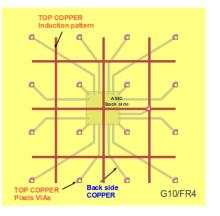

- + Reduce number of readout channels by $\frac{n(n-1)}{2n} \approx \frac{n}{2}$
- \Rightarrow Number of readout channels for n^2 pixel plane: 2n = same as for wire plane
 - New ambiguities
 - Very complex in 2D
 - Lower SNR due to higher capacitance of combined strips/pixels

Damian Goeldi (University of Bern)

u^b

17 / 22

Smart token zero suppression



Damian Goeldi (University of Bern)

27.08.15 18 / 22

Region of interest (ROI)

- Cu induction grid around pixels
- Wake up preamps and ADCs
- Multiplex digital signals of ROIs

Damian Goeldi (University of Bern)

 u^{b}

UNIVERSITÄT

∃ ▶ ∢

27.08.15

19 / 22

Other things to be done

- Copper on Kapton test (very soon)
- Test BNLs new cold ADC
- ROI
- Scale up for module in the dewar in Grosslabor

u^b

20 / 22

Conclusions

- Proof of concept of pixels
- Need to develop accompanying electronics
- Copper on Kapton could be an economic solution
- Can CERN manufacture Kapton tracks?
- Despite the challenges, both are viable alternatives to wires

Backup

• S. Procureur; Genetic Multiplexing; RD51, 05/07/2013

Damian Goeldi (University of Bern)

New Readout Schemes