LHC Run 2 Computing

Alastair Dewhurst, Andrew Lahiff, Raja Nandakumar

Introduction

- Trying to provide one integrated talk rather than 3 consecutive talks on ATLAS, CMS, LHCb.
- Computing Models
- Start of Run 2
- Distributed Data Management / Placement
- Federated XrootD
- Jobs / CPU usage
- New Things

Computing Models

LHCb Computing model

Data storage

- Tape at CERN + 7 Tier-1 sites
 - ~30% of Tier-1 storage at RAL
- Disk at CERN + 7 Tier-1 sites + 11 Tier-2D sites
 - Each T2D with > 300TB storage and local LHCb contact
 - DPM and dCache Storage
- CPU
 - Jobs run at all sites which allow LHCB
 - Jobs without need to access data run everywhere
 - Sometimes throttled at T1 when reprocessing is being done.
 - Jobs needing to access data send to where data is available
 - Remote access when local copy is not available

LHCb Computing model

- LHCbDIRAC to handle jobs on the grid
 - DIRAC + LHCb specific customisations
 - LHCb initiated and till now, the main developer of DIRAC
- All production and large-scale data operations through DIRAC
 - Good interfaces to most grid services
- Ganga for user interface to grid
 - Instrumented with knowledge of LHCb applications
 - Submits jobs to DIRAC which then runs them and returns the output to the user through Ganga

ATLAS Computing model

Slow evolution away from strict model from Run 1

- LFC long gone.
- Transfers allowed directly between T2D.
- Cloud boundaries slowly being removed.
- New analysis model for users (next slide)
- More aggressive data cleanup and archival to tape
- Trying to make use of as many opportunistic resources as possible.

ATLAS analysis model

- Run I model was not efficient for users
- AOD and D3PD replaced by a root readable xAOD format.
- Analysis will be performed on small derived formats that will be produced centrally by the production system.

CMS Computing model

- Data storage
 - tape at CERN + 7 Tier-1 sites
 - 8% of Tier-1 storage at RAL
 - disk at CERN + 7 Tier-1 sites + Tier-2 sites
- Moved away from the regional model used during Run I
 - Run 1: MC production run in regional groups of Tier-2s and with output data stored at associated Tier-1
 - Run 2: MC production run across all Tier-1 and Tier-2 sites with output data stored at any Tier-1
- Introduction of MiniAOD data tier in 2014
 - serve the needs of mainstream physics analyses
- small event size (30-50 kb/event)

CMS Workload management

Global pool

- single HTCondor pool for all CMS analysis & production
- separate Tier-O pool, but jobs can flock to the global pool
- WMAgents (production) & CRAB3 servers (analysis) submit jobs to the global pool
- glideinWMS submits pilots to sites
 - run HTCondor startds which join the global pool

Start of Run 2

LHCb Integrated Luminosity at p-p 6.5 TeV in 2015

Data taking

- More interactions per bunch crossing mean larger memory + CPU footprint for reconstruction.
 - Number of interactions will increase significantly
 - LHCb de-focus beam for fewer interactions

Distributed Data Management / Placement

ATLAS DDM

- Rucio is the Distributed Data Management system.
- Started replacing DQ2 in production from December 2014.
- Was probably introduced before it was ready. Missing features have now been added:
 - DaTRi (Data transfer interface for users) has now been replaced with R2D2
 - Recovery service for lost files now working
- Automated file consistency service being worked on.

ATLAS Data Placement

- Russian TI is starting to accept tape backed data, Taiwan
 TI tape endpoint is being decommissioned.
- New data placement model evolving for run 2:
 - T2s are selected from the following criteria: more than 400TB capacity in DATADISK and more than 90% availability for analysis in the last 3 months.
 - (x)AODs 1 copy across Tier 1, 1 copy across T2
- More replicas can be produced based on popularity.
 - Files cleared up if not used for a certain period of time.
- The sum of each group derivations are allowed ~5% of AOD total.

LHCb Data Placement

- Latest (nth) processing :
 - Data:4
 - Simulation : 3

- n-1th processing :
 - Data: 2
 - Simulation : 2

Earlier processing : Not on disk

LHCb Data usage

- LHCb data usage by type.
 - Green peak = 2015 data taking


```
10<sup>th</sup> September 2015
```

Generated on 2015-09-03 12:30:56 UTC

LHCb Data popularity

CMS Dynamic data management

- All Tier-I/Tier-2 storage is treated as one big distributed cache – dynamic data pool
 - has been in operation since January 2015
- Data popularity
 - usage of datasets is logged
- Data replication
 - based on dataset popularity additional copies are created
- Cache release
 - prevents sites from filling beyond 90%
 - least valuable dataset replicas are deleted (keeping at least one copy in the system)

CMS Production vs debug

- CMS data transfers over the past year
 - ~50 PB production
 - ~70 PB debug

To en centre export		- 12 CH CENT						
TI DE KIT Disk	T1 FR CCIN2P3 Disk	T1 DE KIT Buffer	TI UK RAL Disk	T2 US Wisconsin				
T2 US MIT	T2 DE DESY	T1 ES PIC Disk	T1 RU JINR Disk	T2 US Nebraska				
T2_US_Purdue	T2 US Florida	T2 BE IIHE	T2 US UCSD	T2 US Caltech				
T1 ES PIC Buffer	T1_UK_RAL_Buffer	T2 EE Estonia	T2_UK_London_IC	T2 IT Legnaro				
T1 IT CNAF Buffer	T2 IT Pisa	T2 FR IPHC	T2 IT Rome	T2 DE RWTH				
T2 FR GRIF LLR	T2 ES CIEMAT	T1 FR CCIN2P3 Buffer	T2 BE UCL	T2 FR GRIF IRFU				
T2_FR_CCIN2P3	T2 FI HIP	T2 BR SPRACE	T2 IN TIFR	T2 CN Beijing				
T2 RU JINR	T2 KR KNU	T2 IT Bari	T2 UK London Brunel	T2 RU IHEP				
T2 AT Vienna	T2 CH CSCS	T2_UK SGrid RALPP	T2 ES IFCA	plus 46 more				
Total: 51,572 TB, Average Rate: 0.00 TB/s								

T2_IT_Rome T2_CN_Beijing T2_HU_Budapest T2_UK_London_Brunel T2_FR_IPHC T2 BR SPRACE T2 PL Swierk T2 FR GRIF IRFU T2 EE Estonia 🔲 T2 UA KIPT T2 BE IIHE T2 PT NCG Lisbon Total: 73,276 TB, Average Rate: 0.00 TB/s

... plus 49 more

10th September 2015

T2_FI_HIP T2_IT_Bari

T2 RŪ JINR

T2 AT Vienna

Federated XrootD

Federated XrootD

- ATLAS, CMS and LHCb all use Federated XrootD
 - FAX for ATLAS
 - AAA for CMS
 - 'Phil' for LHCb (They haven't given it a name yet)
 - LHCb have no monitoring yet but have seen failover working in job logs

	ATLAS	CMS	LHCb
Fallback	Yes	Yes	Yes
Overflow Jobs	< 10%	Yes	No
Opportunistic Resources	Yes	Yes	In Future

EU Tier2

sites

4

Local

storage

• •

CMS jobs

FAX usage

how 25 🗘 entries					Search:	
Site	Jobs 🗘	WithFAX [files] 🗘	WithoutFAX [files] 🗘	WithFAX [GB] 🗘	WithoutFAX [GB] 🗘	
unknown: AGLT2_SL6	1	1	0	0.19	0.00	
unknown: BU_ATLAS_Tier2_SL6	1	1	0	0.19	0.00	
unknown: CA-SCINET-T2_MCORE	4	8	12	0.05	0.08	
unknown: DESY-ZN_MCORE	1	1	0	0.17	0.00	
unknown: FMPhI-UNIBA_MCORE	2	2	0	0.44	0.00	
unknown: IFAE_MCORE	2	2	0	0.42	0.00	
unknown: IFIC	39	39	0	17.02	0.00	
unknown: IHEP_PROD	13	13	0	0.18	0.00	
unknown: INFN-FRASCATI	1	1	0	0.10	0.00	
unknown: INFN-MILANO-ATLASC_MCORE	3	30	0			
unknown: INFN-ROMA3_MCORE	14	14	0		Jobs using FAX a	
unknown: LPC	16	16	0	JOD.		
unknown: LRZ-LMU	1	1	0	C. 1		
unknown: LRZ-LMU_MCORE	1	19	0	Tailove		
unknown: MWT2_SL6	29	29	0			
unknown: OU_OCHEP_SWT2	1	1	0	0.19	0.00	
unknown: praguelcg2	3	3	0	0.59	0.00	
unknown: ROMANIA07	13	13	0	2.54	0.00	
unknown: SLACXRD	1	1	0	0.19	0.00	
unknown: Taiwan-LCG2	29	45	20	8.12	0.01	
unknown: Taiwan-LCG2_VL	1	1	0	0.11	0.00	
unknown: TECHNION-HEP_MCORE	2	2	0	0.09	0.00	
unknown: UKI-LT2-Brunel_MCORE	7	14	0	0.28	0.00	
unknown: UKI-SCOTGRID-GLASGOW_SL6	1	1	0	0.28	0.00	
unknown: UKI-SOUTHGRID-BHAM-HEP_SL6	82	82	0	1.56	0.00	

Jobs / CPU usage

PanDA

- PanDA is the production and Distributed Analysis system
- Migrated in July 2014, stable running.

ATLAS Jobs in 2015

ATLAS MultiCore jobs

- AthenaMP is the name of the ATLAS multi-process software.
 - Less memory hungry per core
- Most production work now MultiCore
- Some analysis use cases but want to avoid having another queue at all sites.

CMS multi-core 'jobs'

Time

10th September 2015

Number of cores

CMS multi-core jobs at RAL

Maximum: 2,549 , Minimum: 0.00 , Average: 1,520 , Current: 511.43

New things

ATLAS Event Service

Cloud usage in CMS

- In production:
 - CERN AI (CMS Tier-0)
 - HLT cloud

HLT cloud

LHCb Non-pledged

Generated on 2015-08-26 16:15:56 UTC

- Computing models have been updated for run 2.
- Computing didn't stop during the LHC downtime
 - Even more to do now run 2 has started.
 - Very fast turn around between data taking and producing results
- Many improvements still possible.

