Study of the A(e, e'n) reaction

Meytal Duer (E. Piasetzky, O. Hen, E. Cohen, I. Korover) Tel – Aviv University July 28, 2015

International Workshop on Experimental and Theoretical Topics in CLAS Data Mining

Layout

* Introduction and motivation

* Calculating
$$\frac{(e,e'p)_A}{(e,e'n)_A}$$
 ratio

* Missing momentum (e, e'p) vs. (e, e'n)

* Calculating
$$\frac{{}^{12}C(e,e'p)_{P_{miss}}-high/low}{{}^{12}C(e,e'n)_{P_{miss}}-high/low}$$

np Dominance

np/pp SRC pairs ratio

O. Hen et al., Science 346, 614 (2014)

np- dominance in asymmetric neutron rich nuclei

M. Sargsian Phys. Rev. C89(2014)3, 034305

O. Hen et al., Science 346, 614 (2014).

Protons move faster than neutrons in N>Z nuclei

Variational Monte-Carlo calculations by the Argonne group.

Light nuclei A<12

Nucleus	Asymmetry (N-Z)/A	$< T_p > [MeV]$	$< T_n > [MeV]$	$< T_p > < T_n >$
⁸ He	0.5	30.13	18.60	1.62
⁶ He	0.33	27.66	19.60	1.41
⁹ Li	0.33	31.39	24.91	1.26
³ He	-0.33	14.71	19.35	0.76
^{3}H	0.33	19.61	14.96	1.31
⁸ Li	0.25	28.95	23.98	1.21
¹⁰ Be	0.20	30.20	25.95	1.16
^{7}Li	0.14	26.88	24.54	1.09
⁹ Be	0.11	29.82	27.09	1.10
¹¹ B	0.09	33.40	31.75	1.05

R. B. Wiringa, R. Sehiavilla. S.C. Pieper, J. Carlson, Phys. Rev. C89, 024305 (2014).

Heavy nuclei
$$(A > 12)$$

 $< T_{p(n)} > = \int n_{p(n)}(k) \cdot \frac{k^2}{2m} \cdot d^3k$

Taking a simple np- dominance model:

$$n_p(k) = \begin{cases} \eta \cdot n_{MF}(k) & k \leq k_0 \\ \frac{a_{2(A/d)} \cdot n_d(k)}{2 \cdot Z/A} & k \geq k_0 \end{cases}$$

$$n_n(k) = \begin{cases} \eta \cdot n_{MF}(k) & k \leq k_0 \\ \frac{a_{2(A/d)} \cdot n_d(k)}{2 \cdot N/A} & k \geq k_0 \end{cases}$$

where η is determined by: $4\pi \int n_{p(n)}(k)k^2 dk = 1$

Considered 3 models for $n_{MF}(k)$:

- * Wood Saxon
- * Serot Walecka
- * Ciofi and Simula

Considered 2 values of k_0 :

O. Hen et al., Science 346, 614 (2014)

How to check this hypothesis experimentally?

Problem: One body momentum distributions are not observables.

Solution: Define proxy which:

- 1. Reflects well the difference between proton and neutron momentum distributions.
- 2. Can be well determined experimentally.

Compare it to calculation.

A direct consequence of np- dominance for asymmetric nuclei:

Protons move faster than neutrons

 $< K_p > > < K_n > \qquad < T_p > > < T_n >$

²⁰⁸*Pb*: N = 128 Z = 82

$$R_p = \frac{\# protons|_{k>K_F}}{\# protons|_{k$$

$$R_n = \frac{\# neutrons|_{k>K_F}}{\# neutrons|_{k$$

$$\frac{R_p}{R_n}\approx 1.7$$

$$\frac{A(e,e'p)/^{12}C(e,e'p)|high}{A(e,e'p)/^{12}C(e,e'p)|low}$$

(e, e'p) double ratio

Another prediction for $< T_p > / < T_n >$ ratio

Jan Ryckebusch (Ghent University), ECT Workshop, June 2015.

Neutrons

* Detecting neutrons in the EC – M. Braverman thesis (2014). <u>The goal:</u>

Calculating
$$\frac{A(e,e'n)/{}^{12}C(e,e'n)|high}{A(e,e'n)/{}^{12}C(e,e'n)|low}$$
 ratio.

To do so:

- * Identify (e, e'n) mean field events.
- * Identify (e, e'n) SRC events.

- * EG₂ data: ${}^{2}d$, ${}^{12}C$, ${}^{27}Al$, ${}^{56}Fe$, ${}^{208}Pb$
- * Select (e,e'p) QE events
- * Identify (e,e'n) QE events
- * Check the event selection
- * Apply corrections

* Calculate
$$\frac{(e,e'p)}{(e,e'n)}$$
 ratio

Select (e, e'p) events

* (e,e'p) events were taken with acceptance similar to nuetrons:

1. $\beta < 0.95$

2. EC fiducial cut

3. $|\vec{p}| < 2.34 \ GeV/c$

Selecting Quasi-Elastic events Problem: Low resolution in the EC - $\Delta P \sim 200 \frac{MeV}{c}$. Solution 1: Using smeared protons.

protons

smeared protons

neutrons

QE pick: $P_{miss} < 0.25 \ GeV/c$ $E_{miss} < 0.08 \ GeV$

$$E_{miss} vs. P_{miss}$$

Solution 2: Using electron quantities and scattering angle of the nucleon.

ω [GeV]

$$y \equiv \left((M_A + \omega) \sqrt{\Lambda^2 - M^2_{A-1} W^2} - q\Lambda \right) / W$$

$$M = (M_{A-1}^2 - M_N^2 + W^2)/2$$
 $W = \sqrt{(M_A + \omega)^2 - q^2}$

16

We applied the following cuts:

Checking Selection - 1

* We looked at pairs of kinematic variables which supposed

to be correlated according to 2-body kinematics.

Checking Selection - 2

* We looked at the electron quantities distributions. smeared protons neutrons

Checking Selection - 3

* We looked at the smeared proton and neutron quantities.

neutrons

Checking Selection 4 - Transparency

* We expect that the amount of (e,e'p) and (e,e'n) relatively to (e,e') will decrease as a function of A. un-smeared protons neutrons

Corrections

Protons:

- * Coulomb correction
- * Using CLAS Monte-Carlo simulation:
 - 1. Acceptance correction
 - 2. Detection efficiency

Neutrons:

- * Correction for neutron resolution ~
- * Using CLAS Monte-Carlo simulation:
 - 1. Acceptance correction
 - 2. Detection efficiency
 - 3. EC fiducial cut

 $\eta = 0.814 \pm 0.04(0.06)$ $\chi^2/NDF = 1.9$

Acceptance + Detection Efficiency

- * Same good *e*
- * 10,000 (*e*, *e*′*p*) events:

 $p \sim U(1.3,2.4)$ $\theta_p \sim U(10,50)$

- * For each of them: 30 times $\varphi_p \sim U(0,2\pi)$
- * GSIM Monte-Carlo simulation
- * GPP
- * RECSIS

* Dividing in discovered/generated by binning in p and θ_p

Acceptance + Detection Efficiency Protons

Acceptance + Detection Efficiency + Fiducial Cut Neutrons

 $\frac{(e,e'p)}{(e,e'n)}/\frac{Z}{N}$ ratios

Red Lines =
$$\frac{\sigma_p}{\sigma_n}$$
 and its $\pm 1\sigma$
limits as taken from [1].

Blue Line= our result to a constant fit.

Low (lost events)

 $0 < P_{miss} < 0.25 \ GeV/c$

$$\eta_{low} = \frac{\#(e,e'p)_{smeared}}{\#(e,e'p)} \Big|_{P_{miss} < 0.25} = 0.63 \pm 0.01$$

High (gain events) $0.35 < P_{miss} < 1 \ GeV/c$

 $\eta_{high} = \frac{\#(e,e'p)_{smeared}}{\#(e,e'p)} \Big|_{0.35 < P_{miss} < 1} = 1.17 \pm 0.02$

Back to neutrons

With $E_{miss} < 0.25 \text{ GeV}$:

 $\frac{\sigma_p}{\sigma_n}=2.26\pm0.2$

Acceptance , detection efficiency , statistical , $\eta_{low,high}$, $\frac{\sigma_p}{\sigma_n}$, neutron resolution, fiducial cut (neutrons)

Before looking at the A-dependence:

*
$$R_p = \frac{{}^{12}C(e,e'p)_{0.35 < p_{miss} < 1}}{{}^{12}C(e,e'p)_{p_{miss} < 0.25}}$$

$$?$$

$$R_p \approx R_n$$

*
$$R_n = \frac{{}^{12}C(e,e'n)_{0.35 < p_{miss} < 1}}{{}^{12}C(e,e'n)_{p_{miss} < 0.25}}$$

* Review all the uncertainties of the ratios presented

* Prepare a review for the CLAS analysis committee

Future Plans

 $\frac{np\text{-}dominance}{A(e,e'n)/^{12}C(e,e'n)|high}{A(e,e'n)/^{12}C(e,e'n)|low}$

 $\frac{2N-SRC}{(e,e'np_{back})}$

3N- SRC (*e*, *e'npp*)

Backup slides

(e, e') selection

In order to select (e, e') events we applied the following cuts:

* -0.1 < y < 0.3* $0.9 < \omega < 2.1 \ GeV$ * $1.2 < Q^2 < 3.7 \ GeV^2/c^2$

(e, e'n) selection

In order to select (e, e'n) events we applied the following cuts and corrections:

* -0.1 < y < 0.3* $0.9 < \omega < 2.1 \, GeV$ $* 1.2 < Q^2 < 3.7 \ GeV^2/c^2$ * $\theta_{pq} < 8^{o}$ * **β** < 0.95 * EC fiducial cut * $|\vec{p}| < 2.34 \, GeV/c$ $* P_{\text{miss}} < 0.45 \frac{\text{GeV}}{c}$ $* E_{miss} < 0.25 \, GeV$ *Acceptance correction + detection efficiency + EC fiducial cut Effectiveness of the EC

(e, e'p) selection

In order to select (e, e'p) events we applied the following cuts and corrections:

- * -0.1 < y < 0.3* $0.9 < \omega < 2.1 \ GeV$ * $1.2 < Q^2 < 3.7 \ GeV^2/c^2$ * $\theta_{pq} < 8^o$
- * $\beta < 0.95$
- * $|\vec{p}| < 2.34 \ GeV/c$
- * $P_{miss} < 0.45 \frac{GeV}{c}$
- $* E_{miss} < 0.25 GeV$
- ***Acceptance correction + detection efficiency**
- *** Coulomb correction**

In order to select (e, e'p) smeared and un-smeared events we applied the following cuts and corrections:

- * -0.1 < y < 0.3* $0.9 < \omega < 2.1 \, GeV$ $* 1.2 < Q^2 < 3.7 \ GeV^2/c^2$ * $\theta_{pq} < 8^{o}$ * **β** < 0.95 * EC fiducial cut * $|\vec{p}| < 2.34 \ GeV/c$
- $* P_{\text{miss}} < 0.45 \frac{\text{GeV}}{\text{c}}$
- $* E_{miss} < 0.25 GeV$
- * Coulomb correction

p_{miss}-low/high

In order to select (e, e'p) smeared and un-smeared events we applied the following cuts and corrections:

* -0.1 < y < 0.3* $0.9 < \omega < 2.1 \, GeV$ $* 1.2 < Q^2 < 3.7 \ GeV^2/c^2$ * $\theta_{pq} < 8^{o}$ * **β** < 0.95 * EC fiducial cut * $|\vec{p}| < 2.34 \ GeV/c$ * $P_{miss} < 0.25 \frac{GeV}{c}$ or $0.35 < P_{miss} < 1 \, GeV/c$ *** Coulomb correction**

(e, e'n) selection

In order to select (e, e'n) events we applied the following cuts and corrections:

* -0.1 < y < 0.3
* 0.9 <
$$\omega$$
 < 2.1 GeV
* 1.2 < Q^2 < 3.7 GeV²/c²
* $\theta_{pq} < 8^{o}$
* $\beta < 0.95$
* EC fiducial cut
* $|\vec{p}| < 2.34 \text{ GeV/c}$
* $E_{miss} < 0.25 \text{ GeV}$
* $P_{miss} < 0.25 \frac{\text{GeV}}{c}$ or $0.35 < P_{miss} < 1 \text{ GeV/c}$
*Acceptance correction + detection efficiency + EC fiducial cut
* Divided by $\eta_{low} = 0.63 \pm 0.01$ or $\eta_{high} = 1.17 \pm 0.02$

$$(e, e'p)$$
 selection

In order to select (e, e'p) events we applied the following cuts and corrections:

* -0.1 < y < 0.3* 0.9 < ω < 2.1 GeV $* 1.2 < Q^2 < 3.7 \ GeV^2/c^2$ * $\theta_{pq} < 8^{o}$ * **β** < 0.95 * $|\vec{p}| < 2.34 \ GeV/c$ $* E_{miss} < 0.25 \, GeV$ $*P_{miss} < 0.25 \frac{GeV}{c}$ or $0.35 < P_{miss} < 1 GeV/c$ ***Acceptance correction + detection efficiency** * Coulomb correction