

A Search for ppp-SRC

at EG2

Erez. O. Cohen E. Piasetzky M. Strikman O. Hen M. Duer I. Korover Tel Aviv University

Int. Workshop on Exp. and Theo. topics in CLAS Data-Mining Buffalo (NY), July-28, 2015

Outline

* What is **3N-SRC**?

- * Motivation, and estimating the expected number of ppp-SRC events.
- * Search strategy
- * Event selection
- * Results
- * Consequences
- * Future plans

What is 3N-SRC? $\rho_0 \approx 0.16 \text{ GeV/fm}^3$ 1.7 fm ~ | fm * Large relative & small c.m. momentum (w.r.t Fermi) \mathbf{k}_2 $|\vec{k}_1 + \vec{k}_2 + \vec{k}_3| < k_F$ $|\vec{k}_1|, |\vec{k}_2|, |\vec{k}_3| > k_F$

Motivation

* We know Isospin and topological structure of 2N-SRC.

* Nothing is known experimentally on 3N-SRC

Estimate the expected fraction of 3N-SRC events

Search Strategy

- Consider ¹²Cle,e'p)X events with x_B>1.2 as was done for pp-SRC search, and use kinematics and cuts which maximize SRC effect to
 - Identify ppp-SRC candidate events, and characterize them.
 - Constrain the relative probability of ppp-SRC to 3N-SRC.

(e,e'p) SRC events

 Kinematic
 Q: What is the impact of loosening the

 • XB > 1.2
 cut on recoiling momenta?

< lpl/lql < 0.96</pre>

60

• 1 > | pmiss | > 0.3 GeV/c

 $EQ^2 > 1.5 (GeV/c)^2$]

I loosened the cuts on:

- M_{miss} < 1.1 GeV/c²
 - |p2|,|p3| > 0.35 GeV/c

LC fraction for ¹²Cle,e'p/pp/ppp) events in SRC kinematics

Theta (p-q)

×°

 $\sum \alpha = \frac{A}{m_A} [(E_p^1 - p_z^1) - (\omega - q_z) + (E_p^2 - p_z^2) + (E_p^3 - p_z^3)]$

ppp-SRC/lee'nl with large pmiss

Assuming the 3N estimation is right, this gives us a clear indication of Isospin 1/2 dominance in 3N-SRC: #nnp, #npp >> #ppp, #nnn

*

* Comparer

3N-SRC/(e, with large p_{miss}) \leq 20\%

ratio

(1) ppp-SKC / 3N-SKC ~ 6%

We can improve the upper limit by imposing known properties of SRC.

* Low P(c.m.) & we request lpc.m.k0.25 GeV/c.

									1000				
event	\vec{p}_{miss}	\vec{p}_2	\vec{p}_3	$(\vec{p}_{miss})_T$	$(\vec{p}_{miss})_l$	$(\vec{p}_{c.m.})_T$	$(\vec{p}_{c.m})_l$	event	α_{miss}	α_2	α_3	$\sum(\alpha)$	
-	GeV/c	GeV/c	GeV/c	GeV/c	GeV/c	GeV/c	GeV/c	4912	1.18	0.98	0.90	3.07	
4912	(0.28, 0.00, -0.33)	(-0.25, -0.16, 0.07)	(-0.18, 0.13, 0.13)	0.28	-0.33	0.16	-0.12	7902	1.94	0.84	0.02	2.06	
7893	(0.51,-0.00,-0.28)	(-0.10,-0.04,0.17)	(-0.30,0.24,0.11)	0.51	-0.28	0.23	0.01	1893	1.24	0.84	0.98	5.00	
9011	(0.290.000.44)	(-0.120.230.19)	(-0.26.0.08.0.63)	0.29	-0.44	0.17	0.01	9011	1.24	1.26	0.57	3.07	-
11000	(0.10.0.00.0.10)	(0.07, 0.10, 0.00)	(0.00.0.00.0.07)	0.10	0.10	0.10	0.07	11023	1.26	0.77	0.96	2.98	
11023	(0.10,0.00,-0.49)	(-0.27,-0.18,0.34)	(0.22,0.00,0.07)	0.10	-0.49	0.18	-0.07						
11683	(0.34, 0.00, -0.79)	(0.03, -0.22, 0.58)	(-0.47, 0.24, 0.28)	0.34	-0.79	0.10	0.07	11683	1.41	0.59	0.89	2.89	
15416	(0.52,0.00,-0.43)	(0.04, 0.14, 0.29)	(-0.34,-0.12,0.16)	0.52	-0.43	0.23	0.02	15416	1.24	0.75	0.92	2.92	

ppp-SRC candidates characteristics

Trios are generally divided isotropically

We can improve the upper limit by enforcing known properties of the

Q: Does this simplified simulation seem reasonable and comprehensive to you?

*

36.12% Passe

^{0.8} 1 1.1 [GeV/c]

|p|/la|

10.6

18.24% Passed Ipl/Iql cut

^{0.8} [GeV/c]

4 ppp-SRC candidates are left after pmissl < 0.6 GeV/c cut

Pmiss

0.6

0.8

Entry 4912, Transverse plane

Entry 7893, Transverse plane

Entry 9011, Transverse plane

Entry 11023, Transverse plane

Consequences an Implications

- * Different nucleons dominance / Isospin ½ dominance.
 (ppp & nnn are Isospin 3/2)
- * The number of co-linear is small, and they generally Isotropic
- * Neutron star 3N-SRC dominance:
 - ~ 90% n, 10%p
 - Density >> nuclear density 🖙

- #nnn trios > #nnp trios
- But due the Isospin structure of 3N-SRC, impact of nnp-SRC is large!

EUTRON STAR INTERIOR

Summary

* 2N-SRC Isospin structure is known, nothing is experimentally known for 3N-SRC so far.

ppp-SRC/3N-SRC < 3%x (Acceptance correction)

Experimental signature of 3N-SRC Isospin 1/2 dominance

(#nnp,npp-SRC > #ppp,nnn-SRC)

Future plan

- * Apply Acceptance, Energy loss and Coulomb corrections.
- * Scan all EG2 target nuclei.

- Play the same game with Ale,e'n) events (combine Meytal's analysis).
- * Looking for Ale, e'np) and Ale, e'npp) events.

* What is the impact of loosening the cut on recoiling momenta (lp2 l,lp3 l > 0.35 GeV/c)?

 Poes my hadElastic simplified simulation seem reasonable and comprehensive to you?

Thank you for your time...

Comments/Suggestions/Questions: <u>cohen.erez7@gmail.com</u>

Initial search - consider events with x_B < 1

Event selection

* Calculate as many kinematical variables as possible.

* Build mixed events tree.

* Compare data (Signal) to mixed events (Background)

IPc.ml [GeV/c]

Studying the LC fraction in the relativistic regime

- * α_j is similar to x_B for inelastic scattering.
 - $\Sigma \alpha_j$ > 2 requires at least 2 nucleons involved.
 - $\Sigma \alpha_j$ can distinguish 2N-SRC from 3N-SRC.

 $\alpha = A \frac{E_p - p_z}{m_A}$

 $\sum \alpha = \frac{A}{m_A} \left[(E_p^1 - p_z^1) - (\omega - q_z) + (E_p^2 - p_z^2) + (E_p^3 - p_z^3) \right]$

The advantage of xb>1

- Wish to suppress multi-step processes off low momentum nucleons in the simplest way.
- * x_B <1 would require getting rid of inelastic processes which perhaps is possible but more tricky.
- * Use Or Hen' observation that 2p-SRC is well seen for $x_B > 1.2$.
- Since this sample is clean we can use relative normalization to see how much ppp is suppressed as compared to pp.

3p in the final state

* Two possible mechanisms produce (e,e'ppp) event:

e Interacts with p + pp-SRC.

e Interacts with p from 3p-SRC.

event	Front	<i>I</i> s	h	(fam)r	(Keen)	$(\vec{p}_{c,m})_{\vec{r}}$	$(\vec{p}_{i,m})$
-	GeV/c	GeV/c	GeV/c	GeV/c	GeV/c	GeV/c	GeV/c
2965	(0.26, -0.00, -0.60)	(-0.10, 0.21, 0.10)	(-0.25, -0.28, 0.11)	0.26	-8.60	0.10	4.38
4015	(0.25, 0.00, -0.33)	(-0.25, -0.16, 0.07)	(-0.18, 0.13, 0.13)	0.25	-0.33	0.16	-0.12
4069	(0.62, -0.00, -0.70)	(-0.43, -0.26, 0.26)	(-0.26, 0.14, 0.15)	0.62	-8.70	0.14	-8.29
5227	(0.49, 0.00, 0.84)	$\{-0.27, -0.22, 0.13\}$	(0.05, 0.16, 0.26)	0.49	-0.54	0.28	-0.45
6453	(0.51, -0.00, -0.29)	(-0.10, -0.04, 0.17)	(-0.30, 0.24, 0.11)	0.51	-8.25	0.23	0.01
7372	(0.29, -0.00, -0.44)	(-0.12, -0.23, -0.19)	(-0.26, 0.08, 0.63)	0.29	-0.44	0.17	0.04
9529	(0.34, 0.00, -0.79)	(0.03, -0.22, 0.58)	(-0.47, 0.24, 0.28)	0.34	-8.79	0.19	0.07
12598	(0.52, 0.00, -0.43)	(0.04, 0.14, 0.29)	(-0.34, -0.12, 0.16)	0.52	-0.43	0.23	0.82
13954	(0.75,0.00,-0.54)	(-0.29,0.01,-0.03)	(-0.25,-0.06,0.18)	0.75	-8.54	0.22	-8.39

Changing approach - cleaning events to SRC kinematics

14¹²Cle, e'ppp) events RC kinematics - characteristics

Further information on the 3p-SRC candidates

event	\vec{p}_{miss}	$\vec{p_2}$	$\vec{p_3}$	$(\vec{p}_{miss})_T$	$(\vec{p}_{miss})_l$	$(\vec{p}_{c.m.})_T$	$(\vec{p}_{c.m})_l$	α_{miss}	α_2	α_3	$\sum(\alpha)$
-	GeV/c	GeV/c	GeV/c	GeV/c	GeV/c	GeV/c	GeV/c				
4849	(0.26,-0.00,-0.60)	(-0.10, 0.23, 0.10)	(-0.25,-0.28,0.11)	0.26	-0.60	0.10	-0.38	1.35	0.94	0.97	3.26
4912	(0.28,0.00,-0.33)	(-0.25,-0.16,0.07)	(-0.18,0.13,0.13)	0.28	-0.33	0.16	-0.12	1.18	0.98	0.90	3.07
4976	(0.62,-0.00,-0.70)	(-0.43,-0.26,0.26)	(-0.26,0.14,0.15)	0.62	-0.70	0.14	-0.29	1.48	0.89	0.91	3.28
6368	(0.49,-0.00,-0.84)	(-0.27,-0.22,0.13)	(0.05, 0.16, 0.26)	0.49	-0.84	0.28	-0.45	1.37	0.95	0.78	3.10
7893	(0.51,-0.00,-0.28)	(-0.10,-0.04,0.17)	(-0.30,0.24,0.11)	0.51	-0.28	0.23	0.01	1.24	0.84	0.98	3.06
9011	(0.29,-0.00,-0.44)	(-0.12,-0.23,-0.19)	(-0.26,0.08,0.63)	0.29	-0.44	0.17	0.01	1.24	1.26	0.57	3.07
11683	(0.34, 0.00, -0.79)	(0.03, -0.22, 0.58)	(-0.47, 0.24, 0.28)	0.34	-0.79	0.10	0.07	1.41	0.59	0.89	2.89
15416	(0.52, 0.00, -0.43)	(0.04, 0.14, 0.29)	(-0.34,-0.12,0.16)	0.52	-0.43	0.23	0.02	1.24	0.75	0.92	2.92
17038	(0.75, 0.00, -0.54)	(-0.29,0.01,-0.03)	(-0.25,-0.06,0.18)	0.75	-0.54	0.22	-0.39	1.38	1.09	0.87	3.34

Characterizing background contribution

- * 3N correlations without distortions should have
 - $(p_{miss} + p_2 + p_3)_T < 0.2-0.3 \text{ GeV/c}$
 - Σα 3 < 0.2-0.3
- * Larger values are likely:
 - pnpp correlations in which all goes through pn interactions.
 - Re-scattering
- * Its important to have an idea where do the 4 events with I p_{miss} I \sim 0.8-1 GeV/c come from.
- Such a large suppression of ppp- to pp-SRC requires us to look for rare processes which mimic 3p-SRC.

M

र के के क

Studying contribution to Re-scattering

Consider elastic re-scattering of pp-SRC (p_{lead}), off a proton (p₃) when leaving the nucleus.

- * Model using Geant4 simulation:
 - Both p_{lead} & p_{recoil} from pp-SRC (e,e'pp) data were injected into the simulation,
 - plead was allowed to re-scatter
 - elastically off p3 at rest.

Data - simulation input

(e,e'p) events from pp-SRC kinematics

Simulation results

Generated Momentum

missing momentum

Detected Momentum

calculated c.m. momentum of the ppp-trio

missing momentum

 θ (p-lead,q)

Simulation results

- * About 8.5% of the pp-SRC re-scattering events contribute to ppp-SRC candidates.
- This contribution comes with high missing momentum, may explain high lp_{miss}l 3p-SRC candidates.
- * Normalization needs to be figured out:

1050 pp events X 8.5% X 0.4 (p/N) \sim 35 (e,e'ppp) events

Work under way

- * pp-SRC re-scattering background contribution:
 - How much a scattering off a bound nucleon could be different?
 - Improving the model by allowing p₃ to move (Fermi motion).
- * The residual system (3p+6n) is highly excited (~47 MeV). What effects does this introduce?

	-	# .	·	and the second second	250, h A .	55 8 600
Nuclide	Z	N	Mass excess (keV)	Binding energy (keV)	Mass (mu)	Origin
¹² C	6	6	0.0 ± 0.0	92161.753 ± 0.014	12 000000.0 ± 0.0	
⁹ Li	3	6	24953.903 ± 1.946	45340.942 ± 1.946	9 026789.122 ± 2.089	-

