

I D E A FUSION

Old Dominion University 2015

Comparing proton and neutron momentum distributions in ³He

Student Mariana Khachatryan Supervisor Lawrence Weinstein

What are SRC?

2N-SRC are pairs of nucleons with;

- with small distance between each other(~10⁻¹⁵m)
- High relative momentum and small center of mass momentum with respect to Fermi momentum(250-270 MeV/c)

N(k)/A calculated by Schiavilla et al.(1986) in A=2,3 and 4 nuclei and nuclear matter (NM).

n-p pairs dominate over p-p,n-n pairs.

- n-p(90%)
- p-p(5%)
- n-n(5%)
 - Almost all high momentum nucleons belong to SRC pairs
 - Not described by I.P.M. (the motion of the nucleon is not affected by the other individual nucleons)

Measure momentum distribution in A=3 (e,e'N)

Scatter electrons from 3He and detect knocked out n or p

neutrons in ³H.

From isospin symmetry the momentum distribution of p in ³H should be equal to that of n in ³He.

Majority	Minority
p in ³ He	n in ³ He
N in ³ H	p in ³ H

Hall A experiment

Will study majority and minority nucleon (p in ³He and p in ³H) momentum distributions in A=3 asymmetric nuclei.

 $p_{miss}=p_{initial}$, only if there are no final state interactions or other interactions.

Kinematics:

•
$$x = \frac{Q^2}{2m\omega} > 1$$
 to suppress Delta production.

- High Q^2 ($Q^2 \sim 2(GeV/c)^2$) to minimize meson exchange currents (MEC)
- Small $\theta_{rq} < 40^{\circ}$ (angle between recoil momentum and momentum transfer) to suppress Final State Interactions

The power of ratios

Hall B neutron detection with EC

Forward electromagnetic calorimeter(EC) covers $\theta < 45^{\circ}$

The detailed view of one the EC modules.

2.EC neutron path length corrections.

E2b 4.7Gev H(e,e' π^+)n

Before corrections

After corrections

Had to correct the n momentum because of the bug in RECSIS for e2

EC local coordinates of neutron

E2b 4.7Gev H(e,e' π^+)n

8

 $H(e,e'\pi^+n)/H(e,e'\pi^+)n$ e2b

Cuts on reconstructed neutron

- 1. 0.9 < Missing Mass < 1
- 2. u recons<400, v recons<350, w recons<390
- 3. Vertex cuts

Cuts on detected neutron are

- 1. Total energy deposited in EC>0
- 2. The time detected by EC>0
- 3. -0.5
- Distance between det. and rec. n<40cm 4.

e6
$$D(e,e'p\pi^{+}\pi^{-}n)/D(e,e'\pi^{+}\pi^{-})n$$

Cuts on reconstructed neutron

- 1. 0.85 < Missing Mass < 1
- u recons<400, v recons<370, w recons<390 2.
- 3. Vertex cuts

3 3.5

3.5

3

Cuts on detected neutron

- Total energy deposited in EC>0 1.
- The time detected by EC>0 2.
- -0.53.
- Distance between det. and rec. n<30cm 4.

e2b $H(e,e'\pi^{+}n)/H(e,e'\pi^{+})n$

EC time resolution and momentum resolution

Use e2b ³He(e,e'p) and ³He(e,e'n) to compare n(p_n) and n(p_p)

To compare these:

Correct (e,e'n) for detection efficiency

Smear (e,e'p) with n resolution

• Require $\theta_p < 45^\circ$

$^{3}He(e,e'n)$

 $^{3}He(e,e'p)$

$$v + M_{A} = \left(M^{2} + q^{2} + y^{2} + 2yq\right)^{1/2} + \left(M_{A-1}^{2} + y^{2}\right)^{1/2}$$
$$v = E - E'$$

Cut on y<0.5GeV/c

Cut on y<0.5GeV/c

Where are the QE (e,e'n) events?

Quasielastic events are at $\theta_p > 45^\circ$ \implies Need LAC!

HALL B neutron detection with LAC

Sectors 1,2 Rarely used

Rotate x,y coordinates to local coordinates

LAC timing

E2a 2.26Gev He4

LAC timing after offset correction E2a 2.26Gev He4

LAC timing resolution

Need more precise time calibration of LAC!

Need to recook the data to include individual TDC information for all PMTs

Conclusions

$p(e,e'\pi^+)X$

23

LAC time calibration attempt

E2a 2.26Gev He4

The mean of $t_{LAC} - t_{TOF}$ distribution corrected for path length vs x

The sigma of $t_{LAC} - t_{TOF}$ distribution corrected for path length as a function of x

The mean of $t_{LAC} - t_{TOF}$ distribution corrected for path length vs x S2

The sigma of $t_{LAC} - t_{TOF}$ distribution corrected for path length as a function of x

