An electron scatterer's view of neutrino physics

Larry Weinstein Old Dominion University

International Workshop on Theoretical and Experimental Aspects of CLAS Data Mining Canisius College, July 2015

The problems

- Complicated beams
 - Non-monochromatic
 - Not pure
- Simplistic detectors
 - Crude granularity
 - Often non-magnetic
 - Optimized for tiny cross sections
 - Assumed the nuclear physics was known
- Need to reconstruct the incident neutrino from the detected outgoing particles

Fermi Gas Model: Too good to be true?

Extra Transverse even at x = 1


```
<sup>12</sup>C(e,e'p)
q=0.4 GeV and x=1
```

extra transverse strength starting at the 2N KO threshold

Fixed q

¹²C(e,e'p) Bates q ~ 1 GeV/c

Non-QE reactions increase with ω

S. Penn, unpublished J. Morrison, PRC **59**, 221, (1999)

L. Weinstein, DataMining 2015

Fixed ω = 0.2 GeV

R. Lourie, PRL 56, 2364 (1986)
L. Weinstein, PRL 64, 1646 (1990)
S. Penn, unpublished

¹²C(e,e'p) Delta Region

2N currents enhance correlations

L. Weinstein, DataMining 2015

O(e,e'p) Ryckebusch

Summary

- Electron scattering:
 - Monochromatic beam
 - Choose kinematics to minimize "uninteresting" reaction mechanisms
 - Calculate cross sections after the fact
- Neutrino interactions
 - Continuous mixed beams
 - Must include all reaction mechanisms
 - Need good models in event generators
 - Correct initial state
 - MEC, IC
 - FSI (not discussed here)