⁸B at ISOLDE

Jochen Ballof

MAINZ

Motivation

- Investigate the structure of 8B, which is expected to be proton halo in ground state, reaction studies, REX, HIE, 10³ pps, INTC-I-126
- Study ⁹C excited states by resonant elestic scattering of ⁸B on a thick proton target, *HIE*, 10⁴ pps, *INTC-I-127*
- Decay studies and Reactions induced by a ⁸B accelerated beam 10³ 10⁴ ions /s, REX, HIE, INTC-I-128
- Study the of ⁸B using ⁸B + ²⁸Si, optical model parameters and reaction mechisms , REX, 10³ - 10⁶ pps, INTC-I-129
- Study of diffusion in semiconductors using alpha emission channeling, 2 × 10⁹ particles , INTC-I-130

Challenges

- Boron reacts with many materials the ion source is made of
- Volatility of boron is low

→ Extraction of atomic ⁸B is expected to be difficult

Solution: Form volatile compounds of ⁸B in-situ, which are easy to extract:

Ionization of BF_x

Offline Studies

Boron powder placed in VADIS ion source and SF₆ injected

Formation of BF₃ is thermodynamically favoured at lower temperatures

➔ Dissoziative ionization predominant

Ch. Seiffert, 2014

Decay and Detection of ⁸B

⁸B undergoes β⁺2α decay

Resulting radiation:

- Alpha with continous spectrum (-> Silicon)
- Positrons (-> Scintillator)
- Annihilation radiation (-> Germanium)

How to distinguish between ⁸B and ⁸Li?

- Annihilation radiation in coincidence with alphas
- Chemical separation
- Retention of non volatile compounds on cold transfer line

Detection Setup

Evacuated chamber flanged to LA1

- Beam is implanted in aluminium target
- Alpha detector (Si) facing the target
- Germanium detector for gamma radiation
- Coincidences between alpha and gamma (15 µs window)

Additionally measurements with the **tape** station:

- Beta detector (plastic scintillator) and
- Germanium detector

8B Beam developments

$Results-Spectra \ {\rm mass} \ 46 \ ({\rm BF}_2)$

Alpha Spectrum (LA1)

Gamma Spectrum (LA1)

Release Curve (Beta activity)

Gamma Spectrum (Tapestation) \rightarrow Yield: $1 \cdot 10^5$ ions / μ C

8B Beam developments

Results

Yields from annihilation radiation (ions / µC)

- Tapestation in agreement with beta yields
- ✓ Resembles offline trend:

 $BF_{2}^{+} > BF^{+} > BF_{3}^{+}$

• Yields on LA1 about 5 times lower

Yields on mass 46 (BF₂) at LA1 (ions / μ C)

- Annihilation radiation is in coincidence with alphas
- ✓ Yields in agreement within factor 3

Summery and Outlook

 ✓ Molecular boron beams could be produced at ISOLDE with an intensity of 10⁴-10⁵ ions / µC

Open issues

- Gas injection into the target unit needs to be verified
- Stable contaminants on mass 46
- Most letters of intend request accelerated beam

...and a longer-range outlook:

Carbonyle beams of refractory elements

Carbonyle compounds $V(CO)_6$ $Cr(CO)_6$ $Mo(CO)_6$ $W(CO)_6$ $Tc_2(CO)_{10}$ $\operatorname{Re}_{2}(\operatorname{CO})_{10}$ $Ru(CO)_{5}$ $Os(CO)_{5}$ $Co_2(CO)_8$ $Rh_2(CO)_8$ $Ir_4(CO)_{10}$ Ni(CO)₄

Thank you!

