Beam Developments using Optical Pumping in ISCOOL

Optical Pumping Theory

- Use laser light to excite ions out of the ground state
- This is most effective if done while the ions are trapped in the cooler → can use pulsed lasers and low power
- Was used successfully at the beginning of June to do spectroscopy on metastable ionic Mn
 Was used successfully at the beginning of sectors of the sector of th

Longitudinal Electric Potential for Bunching

Why Optical Pumping: Atomic Mn

- Atomic Mn experiment carried out at COLLAPS in 2012
- Goal was to determine the spins, magnetic dipole and electric quadrupole moments → another transition needed!

Challenges for Optical Pumping

The laser and the ion bunch were not overlapping due to the misalignment of ISCOOL

Re-aligned ISCOOL

Laser spot after passing through the cooler

The Test Case: ⁸⁸Sr

 First tried optical pumping using a special property of ⁸⁸Sr – the excited state charge exchanges resonantly with the gas in the charge-exchange cell while the ground state does not

Plot 0 Waveform Chart 1050 Neutral particles seen with optical pumping 1000 - $950 \cdot$ mplitude 900 Neutral particles 850 seen without optical 800 pumping 750 100Time

⁸⁸Sr Results

 Estimates of efficiency depend on three unknowns – the contaminants in the beam, the percentage of the beam optically pumped and the efficiency of the charge-exchange cell

First OP Physics case: Ionic Mn

 With the ISCOOL re-aligned, spectroscopy was attempted on Mn ions using an optically pumped transition

Ionic Mn Results

Quadrupole Moments

Very preliminary!

Future Physics Cases

- Refractory beams
 - Technique could be used to produce beams such as Hf or Ta

Element of interest extracted as a molecule Laser induced disassociation in the cooler

Beam of the required element exits cooler

Future Physics Cases

- 2+ ionization
 - Extra ionization step taken in the cooler
 - Could be used for beam purification among other things
- Other optical pumping physics cases

Future Developments

- In order to implement these physics cases, we need an estimate of the optical pumping efficiency in the cooler → dedicated beam time
- This depends on:
 - Laser/ion overlap
 - Trapping time
 - Saturation per laser pulse
 - Experimental setup factors (charge exchange efficiency, transition used, etc.)

Future Developments

 Molecular formation inside the cooler was observed during the 88Sr tests

 Investigation of dynamics inside the cooler will shed light on the overall efficiency of the process under different circumstances

Conclusions

- Optical pumping has now been proven to work for physics cases at ISOLDE
- The quadrupole moments of neutron-rich Mn have been measured for the first time and results will soon be published
- More tests are needed to benchmark this technique for refractory beams and 2+ ionization
- The efficiency of the optical pumping process in the cooler should be investigated

Thank You

Atomic Mn Results

• Comparison of extracted g-factors (g = μ / I) to theory gives us insight into nuclear structure in this region

Atomic Mn Results

 No quadrupole moments extracted due to the transition used → we need a different transition

Ionic transition from an optically pumped state will provide measurable quadrupole moments

88Sr Results

 Measured the effect of OP vs various parameters, like cooling time, laser power and

wavelength

