

# A Symbiotic Deployment of a Service Grid and an Opportunistic Grid over the same e-Infrastructure: the EELA-2 Experience

#### Francisco Brasileiro

Universidade Federal de Campina Grande (UFCG), Brazil JRA1 Manager for EELA-2 project

fubica@dsc.ufcg.edu.br





### Ge La

#### **Motivation**

- As the grid technology matures, more and more infrastructure enter in production
- Following the sharing spirit of grids, a lot of attention has recently been placed in the integration and interoperation of production grid infrastructures
- Integration/interoperation is normally achieved at the grid middleware level
  - Several approaches have already been proposed
  - Choosing the right approach depends not only on the middleware that are used, but also on the motivations for the integration/interoperation



### The "Why" question

 Before we present how we approach integration/interoperation of a Service Grid with an Opportunistic grid in the EELA-2 project, let us try to understand why one would like to integrate/interoperate two PGIs

 As in any partnership, a good understanding of the value that each partner gets and yields is crucial for the long-term sustainability of the partnership



### The "Why" question

- Let us take a look at the main stake holders involved
  - Resource owners
    - These, ultimately, are the ones that decide for or against the "operation"
    - Possibly driven by technical arguments from application users and infrastructure administrators
  - Users
    - Want more/better resources (that they find in the other PGI)
      - Ideally without giving up the resources they already have access
    - Want more/better functionalities (that they find in the other PGI)
      - Ideally without having to change their application
  - Administrators
    - "Is there a change? I am against!" ©



### The "Why" question in the EELA-2 context

- Very dissimilar application users and resource providers
  - Few large/medium labs with strong links with large labs and their associated projects
    - They normally place non-trivial processing, storage, communication, and, most importantly, coordination requirements on the grid middleware
    - Although a non-negligible amount of jobs are in fact embarrassingly parallel sub-tasks of the same application (ie. Bag-of-Tasks – BoT)
    - They need and can cope with the difficulties of installing and, most importantly, maintain operational a sophisticated service grid
  - Many small labs, mostly working in isolation or starting to develop collaborations with other labs
    - Nevertheless, access to non-trivial amounts of computing resources enable these labs to improve their methodological approach
      - Almost all their jobs are BoT
    - They do not need, nor are able to, cope with the difficulties of installing and maintain operational a sophisticated service grid
      - Nevertheless, they want to be able to take part in larger cooperations with larger research labs



### The "Why" question in the EELA-2 context

#### In summary:

- Large/Medium labs need a service grid based on a rich grid middleware
  - They have chosen gLite as such middleware
  - The first phase of the EELA project has successfully deployed such a PGI
  - But it would be nice if the resources of the small labs (that could not use gLite) could also be integrated in the grid
- Small labs would rather build a grid that is supported by a simpler middleware target to efficiently execute BoT applications
  - Opportunistic grid middleware are the correct choice for them
  - They have chosen OurGrid as such middleware
    - More details about OurGrid later
  - But they want to cooperate with the larger labs and for that, they are required to provide their share of contribution to the whole system



#### **Promoting symbiosis**

- By "integrating" the gLite-based Service Grid with the OurGrid-based Opportunistic grid we aim at:
  - Increase the size of the OG, by exploiting idle resources in the SG (more and better resources for the OG)
  - Leverage the virtualization infrastructure of OurGrid to provide gLite worker nodes on the shared machines of the OG and on dedicated machines running OurGrid (more resources to the SG)
    - OurGrid's incentive mechanism/scheduling policy guarantees fair sharing of resources
  - Provide a specialized service for the execution of some of the BoT applications that currently execute on the SG (better functionality for SG users)
    - This allows improved performance for these applications
    - Has the side effect of improving the performance of the other applications that run on the SG, due to the smaller workload it will need to deal with



### The "How" question

- Now that we know why, let us discuss how we integrated a gLite-based SG with an OurGrid-based OG
- Several integration approaches have already been proposed
  - Gateways/Bridges
    - "Transforms" the grid resources of one grid in resources of the other grid by implementing a suitable bridge interface
      - The EDGeS project is working on a generic bridging technology
  - Gliding-in
    - "Install" part of the grid middleware of one grid in the resources of the other grid on the fly (through pilot jobs)
- We propose a conviviality approach that is based on having the two middleware (or parts of them) installed in the resources that wish to provide this feature
  - It achieves similar effect of the gliding-in approach



# If only everyone were trustworthy

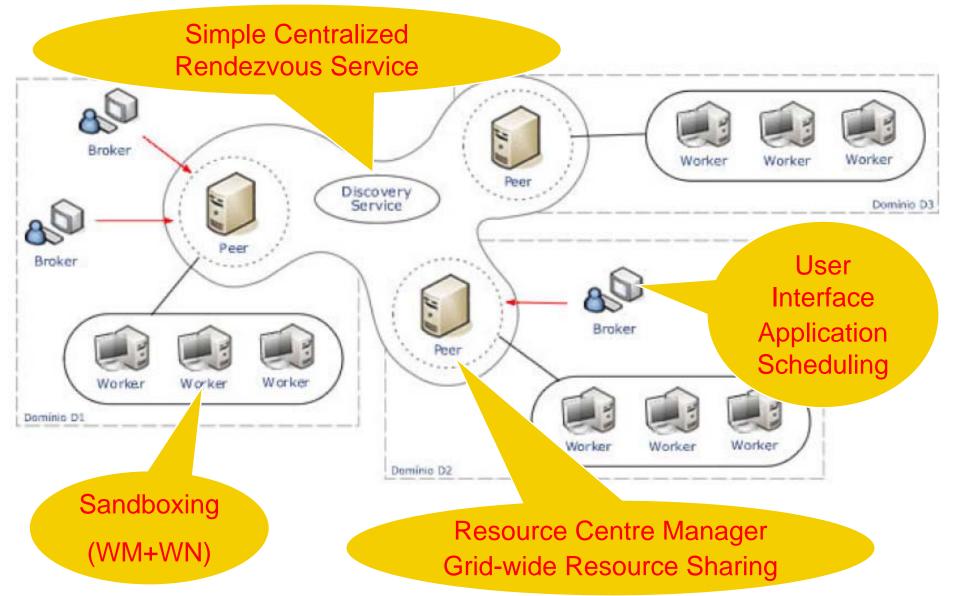
- Security issues is arguably the most complicated matter when interoperating two PGIs
- OurGrid is meant to operate in a very promiscuous environment
  - Peers do not trust each other
  - Yet, they need to cooperate
- There are different security aspects to take into account
  - How to protect resources from malicious users?
  - How to protect the applications from malicious resources?
  - How to prevent free-riding?



## If only everyone were trustworthy

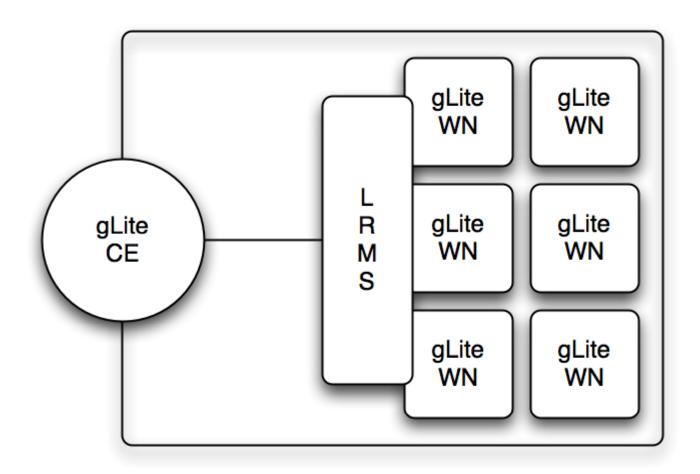
- Different security aspects are treated differently
  - How to protect resources?
    - Very conservative approach based on "the administrator denial-of-service" approach ©
      - Remote jobs run inside a virtual machine with limited disk access and no access to the network (remember it only supports BoT)
  - How to protect applications?
    - Very liberal approach I mean, the user is left on its own
      - Tasks may indicate a user-defined checking mechanism to be applied to the output of jobs (eg. to verify the existence of a watermark in an appropriate place)
      - We have implemented credibility-based scheduling (a la BOINC), but it is not in the supported software
  - How to prevent free-riding
    - The Network-of-Favors incentive mechanism
    - Asymmetric cryptography used to prevent impersonation




### OurGrid in a nutshell (1/2)

```
job:
  label: my_rendering_example
  requirements: (os=linux)
task:
  init:
             store render $STORAGE
             put input-1 $PLAYPEN
             render < input-1 > output-1
  remote:
  final:
             get output-1 output-1
  check:
             ./my_check output-1
task:
             store render $STORAGE
  init:
             put input-2 $PLAYPEN
             render < input-2 > output-2
  remote:
  final:
             get output-2 output-2
             ./my_check output-1
  check:
```

. . .




### OurGrid in a nutshell (2/2)






### A closer look at the gLite CE

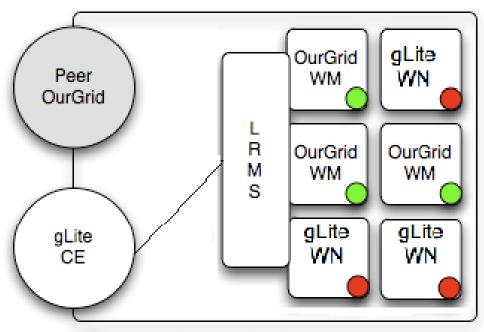




## Road map for the middleware conviviality

 Allowing idle resources in an EELA-2 gLite resource centre to be exposed as OurGrid resources




gLite WN busy - OurGrid WM not running

www.eu-eela.eu



# Road map for the middleware conviviality

 Allowing resources of an OurGrid resource centre to be exposed as virtual gLite resources



- gLite WN idlle OurGrid Worker Manager (WM) running
- gLite WN busy OurGrid WM not running



#### **Current status and future work**

- Latest version of OurGrid just released with support for the exploitation of idle cycles in service grids
  - Available for download at both:
    - https://forge.eu-eela.eu/projects/ourgrid-eela/
    - http://www.ourgrid.org/
  - Customized installation guide available for sites already running gLite
- Installation of gLite in OurGrid sites and mapping of gLite BoT jobs in OurGrid jobs to be released within a couple of months
- Evaluate the impact of the conviviality in a production environment



#### **Concluding remarks**

- More information on the EELA-2 JRA1 activities at the project's website:
  - http://www.eu-eela.eu/
- For OurGrid specifities, visit:
  - http://www.ourgrid.org/
- Contact me at:
  - fubica@dsc.ufcg.edu.br

#### Thanks for your attention!