

Enabling Grids for E-sciencE

Migration of the MAGIC Datacenter and Monte Carlo simulation to a Grid infrastructure

Presenter: Roger Firpo (PIC)

A. Vazquez (INSA), J.L. Contreras (UCM), A. Moralejo (IFAE), A. Ibarra (INSA), E. Acción (PIC), I. de la Calle (INSA), P. Casatella (UCM)

www.eu-egee.org

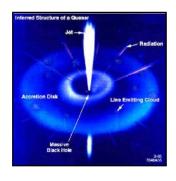
MAGIC

- Grid opportunities for MAGIC
- MAGIC Monte Carlo production
- Migration of the data center to Grid

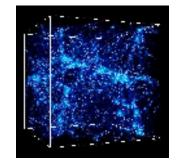
What is MAGIC?

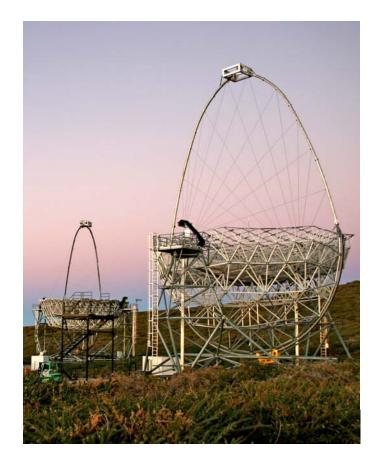
Enabling Grids for E-sciencE

MAGIC is a Cherenkov telescope system for g-ray astronomy in the very high energy range (VHE, E > 25 GeV)


Scientific targets

Cosmic Accelerators


AGN, PWN, SNR, GRB ...


Fundamental Questions

Dark Matter, Cosmic Rays,
Quantum Gravity, Cosmology ...

The MAGIC Collaboration

Enabling Grids for E-sciencE

The MAGIC Collaboration:

- 21 institutes (mostly in Europe)
- ~ 200 members

Telescope site in Canary Islands

Observatorio Roque de los Muchachos

- MAGIC I operating since 2004
- MAGIC II in commissioning (2009)

Future detector enhancements

Equip MAGIC I with same camera and readout as MAGIC II

4

Scientific Highlights

Discovery of 10 new VHE g-ray sources
7 extragalactic + 3 galactic

Enabling Grids for E-sciencE

 New populations unveiled Radio-quasar & Micro-quasar

Detection of distant VHE g-rays
z = 0.54, farthest up to now

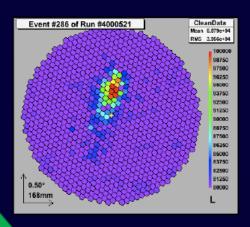
Observation of GRB in prompt emission
No VHE g-ray detections so far

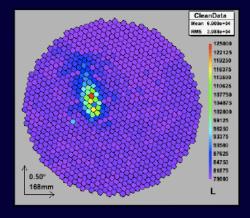
Test on Lorentz Invariance (QG effects)
Using big emission flares

 More than 30 published papers and many more are in the pipeline

MAGIC Data

Enabling Grids for E-sciencE


MAGIC records Cherenkov light flashes from g-ray induced atmospheric particle showers


Major issue: Background rejection

- Separate g-rays from hadrons
- Based on image parameters

Monte Carlo simulations required

No VHE "test beam" available

MAGIC Data Center @ PIC

Enabling Grids for E-sciencE

- MAGIC produces 100 TB of raw data each year
 - And up to 400 TB in the final configuration
- The MAGIC data center at PIC provides:
 - Data transfer from ORM and storage
 - Data reduction
 - User access and support
- PIC data center operating since 2006
 - Two telescope hardware upgrades
 - A second telescope in commissioning
- A data center upgrade is needed!

The MAGIC VO

MAGIC VO exists since 2004

Initiative by H. Kornmayer et al.

Hiatus

- Main actors left the project
- Grid was no priority within the collaboration
- No manpower

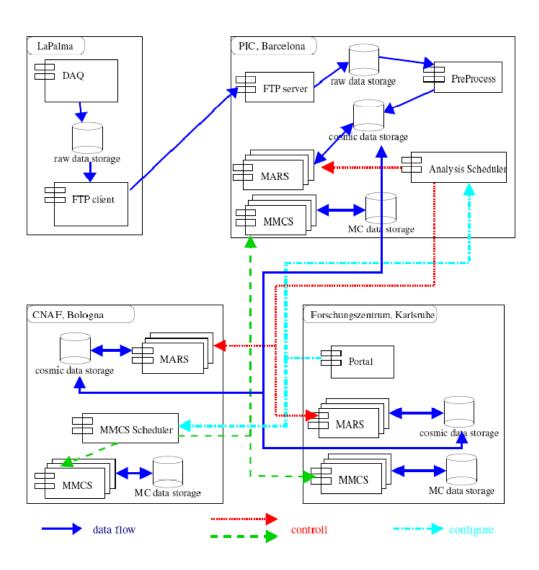
2007-08: New crew taking over grid operations

- UCM (Madrid) and Dortmund, in collaboration with INSA
- IFAE and PIC

Why GRID?

- Monte Carlo production and data reduction require lots of CPU
- Data has to be distributed to all collaborators across Europe
- Improved control over analysis & MC production control
- User access to shared resources and standardized analysis tools
- Better and easier data management
- Increased technical support, benefit from LCG experience

• How to proceed?


- Resume development of MC tools and start MC production
- Migrate data to a grid-aware file system
- Use grid tools for data transfer and distribution
- Migrate existing analysis tools to grid & create new
- Interfaces to access data, monitor jobs & transfers ...
- BUT: Convince users to use this tools! Training...

MAGIC in Grid (2004)

Enabling Grids for E-sciencE

- H. Kornmayer proposed a workflow for MAGIC VO
- Involve 3 national centers
 - CNAF (Bologna)
 - PIC (Barcelona)
 - GridKA (Kalsruhe)
- Connect MAGIC resources
- 2 subsystems:
 - Monte Carlo
 - Analysis
- Start with MC first

MAGIC Monte Carlo production

Monte Carlo production

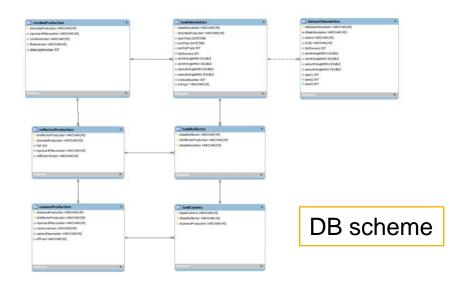
Enabling Grids for E-sciencE

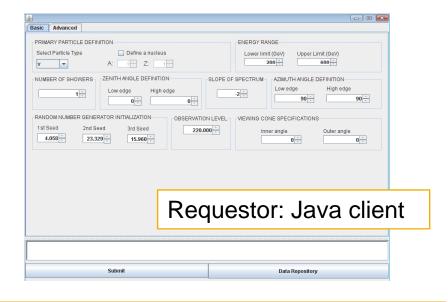
- The recorded data are mainly background events due to charged cosmic rays (CR)
- Background rejection needs large samples of Monte Carlo simulated g-ray and CR showers
- Very CPU consuming
 - 1 night of background > 10⁶ computer days
- Access to simulated samples, MC production coordination, scalability (MAGIC II, ...)

GRID can help with these issues

Implementation

3 main components

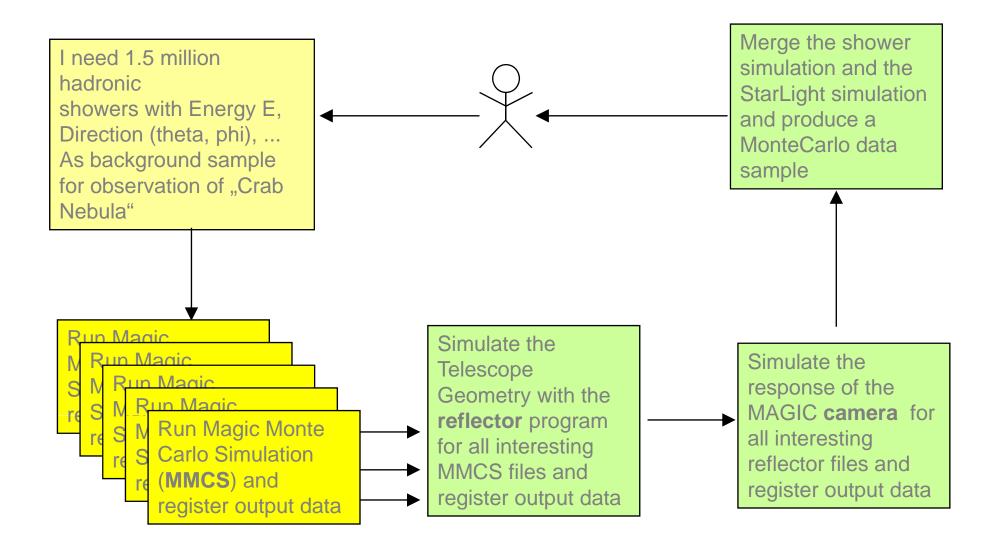

Enabling Grids for E-sciencE


- Meta data base
 - bookkeeping of requests, jobs and data
- Requestor

Users insert requests to the meta data base with MC parameters

Executor

creates Grid jobs by checking the metadb and generating the input files



MC workflow

Enabling Grids for E-sciencE

Monte Carlo production

Enabling Grids for E-sciencE

- 2004: MC production workflow and first tool prototypes
- 2005: Production test

. . .

- 2007-09
 - UCM + UT Dortmund + INSA retake the project (2008)
 - Development of a web interface to manage production
 - Java-based
 - Manages job configuration, submission and monitoring
 - GridWay used as a metascheduler
 - MC test production w/ reduced set of resources
 - PIC, CIEMAT & UT Dortmund clusters
 - Still some technical difficulties
- Plan to start producing MC for MAGIC-II soon

MAGIC data center@ P IC

MAGIC Data Center

The MAGIC data center is hosted by PIC in Barcelona

PIC is the spanish Tier-1 for LHC

Data center services:

- Data transfers from ORM and storage
- Computing (internal data center)
- User data access and support

Challenges faced

- Second telescope and upgrades: Increase in data volume
- Scalability: Increase in complexity and maintenance time
- Storage and Computing: Increase and optimize resources
- Users: Improve data access, open computing resources

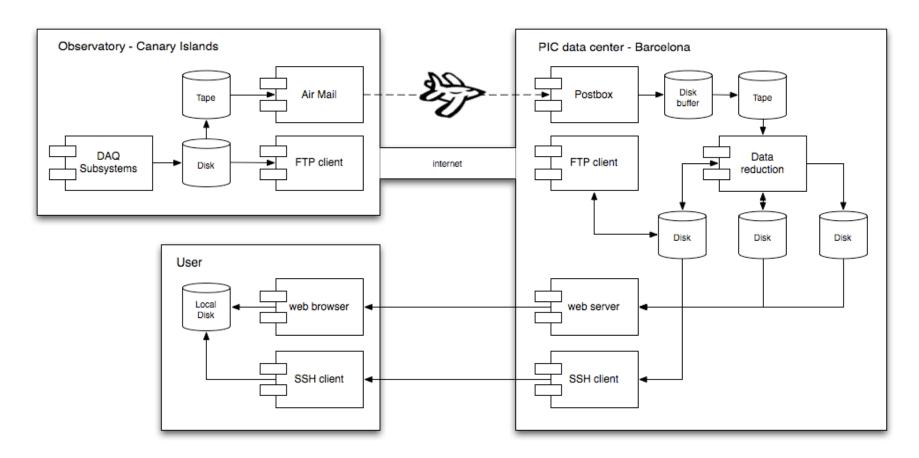
Data Center: Data volume

Enabling Grids for E-sciencl

Increase in data volume foreseen in near future

Telescope system	MAGIC I	MAGIC II	MAGIC I + II	2 x MAGIC II
	2004 -	2009	2009	2011?
# of channels	577	1081	1658	2162
Event size (kB)	60.7	110.0	170.7	219.9
Event rate (Hz)	350			
Data Rate (GB/h)	73.0	132.1	205.1	264.3
Obs. Time (h/yr)	1500			
RAW data (TB/yr)	106.9	193.6	300	387.1
RAW.gz (TB/yr)	32.1	58.1	90.2	116.1
Reduced data (TB/yr)	4.1	7.1	12.3	15.3

In the next ~3 years data volume will increase 4-fold

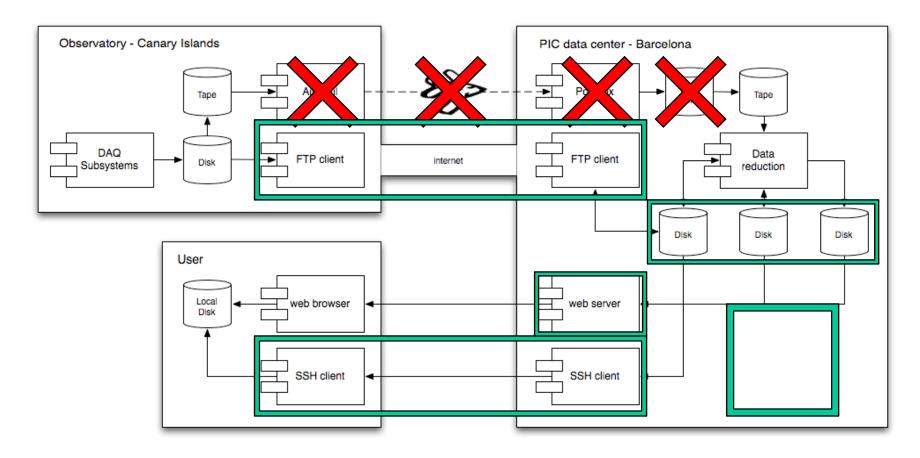


Data Center: Old data flow

Enabling Grids for E-sciencE

Data flow

- Current scheme is obsolete: scalability problems
- Maintenance has become a major time-eater

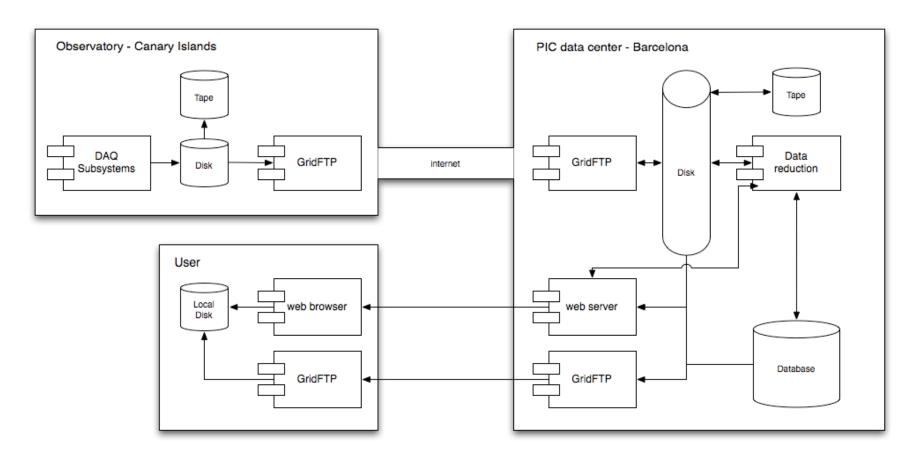


Data Center: New data flow

Enabling Grids for E-sciencE

Data flow optimization

- Deprecate classic transfer methods in favor of Grid
- Simplify flow and optimize resources



Data Center: New data flow

Enabling Grids for E-sciencE

Goals

- Easy management and service monitoring
- Better user experience

Data Center: Storage

- Current storage system requires too much maintenance
- Non-existent file catalog, requires custom tool development
- Solution: adopt Tier1-grade Grid-based storage system
 - Standard tools + supported service @ PIC
 - LFC: Easier data management and monitoring

	Old scheme	New scheme
Storage	NFS + CASTOR	dCache (w/ ENSTORE)
Tape access	Different protocol	Transparent to user
Maintenance	High, custom tools	Low, PIC service
Data catalog	-	LFC
Security	No access control	User certificates, VO roles,

Transition to new scheme will be done while in production

Data Center: data access

Data access requirements:

Access data anytime from anywhere

• Two approaches:

- Data access using GridFTP or equivalent
 - Robust transfers, not easy file browsing
 - BUT: Not all institutes support Grid
- Web access
 - Easy file browsing, not that easy transfers

Solution:

- Build web-based service to interface to GridFTP
- Use httpdoors as backup solution & for "Grid-handicapped" users
- Use LFC + project database as backend

Data Center: Computing

Computing at MAGIC now

- Each institute uses its own computing resources (CPU + Storage)
- Only few can access a computing farm
- Data center CPUs exclusive to "official" analysis

We go towards opening the computing service to all users

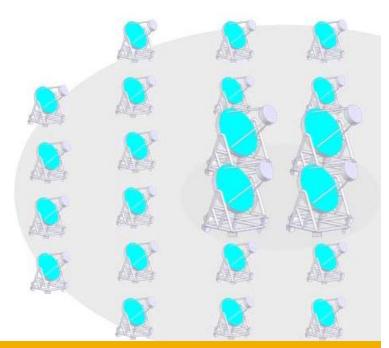
- Grid-based computing
- Universal access to data in the SE and use of the CE (and +CEs)
- Standard analysis tools
 - Job submission and management using a web UI
- PIC data center will still play a central role
 - Data management, manpower, ...
- + resources & efficiency: more and better scientific outcome

- MAGIC has resumed Grid activity
- Grid-based Monte Carlo production system developed
 - Systematic production will start soon
- MAGIC is migrating data and analysis to Grid
 - Migration of the data center already started
 - Analysis tools will start being developed soon

Related experiment

Cherenkov Telescope Array (CTA)

- Next generation of IACT
- Big step-up with respect to current IACT



- CTA VO already exists and active
- PIC supports the CTA VO

