
Experience with C++
Code Quality in ATLAS

Stewart Martin-Haugh, Emil Obreshkov, Shaun Roe, Rolf
Seuster, Scott Snyder, Graeme Stewart

Tools in use
Experience

Progress, Pleasures and Pitfalls,

1

Compilation * Static Analysis * run-time behaviour

TOOLS

2

Atlas code

loc
(millions)

2 6

100

~420
developers

~140 ‘domains’
e.g. Tracking-Fitting

AMI

(gcc 4.9)
3

Compiler checks
Code should always, where possible, compile without
warnings.
It is beneficial to expose the code to different
compilers; e.g. Clang builds give additional info:
• Mismatched struct/class; Unused private class members; Mismatched header
guard.
• std::abs(eta < 2.5)
• if ((bitfield && 0x0011) != 0) ...
• !val==10

gcc plug-ins
• Check for inheritance structure already in place
• Considering: naming convention checks

4

Coverity®

Mon Tue Thu Fri Sun
start

result

start

email,
result1x

soap/curl

Coverity

AMI

python

defect
assignment

defects/file

file/domain

defects/domain

email

web display
xslt xslt

qa guy

5

•
•
12598 09/07/2014 (High) Resource leak :/
ForwardDetectors/ALFA/ALFA_CLinkAlg/src/
ALFA_CLinkAlg.cxx in function "execute"
•
•

devs

6

Pitfalls: Coverity’s classification may not correspond
to your own; e.g. Uninitialised members are classified
‘high’, as are obvious resource leaks; however a faulty
assignment operator which can also leak resources
will be ‘low’. Parse errors can occur and are classified
‘low’ but may mask many other defects.

A command line tool,
‘issues’ will query
the web page and list
issues for a specified

file

7

Coverity® progress
Offline

Simulation
Conditions

HLT
Analysis

Reco
Event
Gaudi

DetComm
Trigger

0 0.2 0.4 0.6 0.8 1

defects/kloc

“Coverity’s analysis found an average defect density of .69 for open source
software projects that leverage the Coverity Scan service, and an average
defect density of .68 for proprietary code developed by Coverity enterprise
customers. Both have better quality as compared to the accepted industry
standard defect density for good quality software of 1.0 [defects/kloc].”

!
Sept ’15

Industry report 2012

8

Coverity® pleasures and pitfalls
“spending hours with a memory profiler
could save you 5 minutes looking at the

coverity report”

False positives (very few):
e.g. “restoring ostream format”
“parse errors” (particularly complicated templates)

Near misses:
792	
 	
 	
 	
 //set	
 the	
 foreign	
 key
6. return_constant: Function call variableType() returns 4.
CID 11595 (#2-1 of 2): Out-of-bounds read (OVERRUN)
7. overrun-local: Overrunning array of 4 bytes at byte offset 4 by dereferencing pointer &"_FK"[variableType()].
793	
 	
 	
 	
 pixel_columns.createForeignKey(variableType<T>()+"_FK","FK",m_pixeltable,"FK");
794	
 	
 	
 	
 //	
 create	
 indices

Misses: if (m_Analogue[1][strip]<0.0000001 || m_Analogue[1][strip]>-0.0000001){ //

9

Other Static Analysers
Available, not yet integrated into reporting system:
• cppcheck

Open source, easily configurable, quick (~1 hr)
somewhat noisy, more false positives, but does find additional
defects. Output to XML/static web page. Options for
performance (e.g. “use pre-increment”), style.

• Include-what-you-use
Easy to set up; scope is limited to tidying up #includes; web
interface available for reports (R. Seuster).

Investigated:
PRQA: Nice system, flexible, industry standards, can enforce
naming conventions; $$, difficult to integrate in our build
system

10

2 July 2015 Rolf Seuster (TRIUMF) 11

cppcheck

2 July 2015 Rolf Seuster (TRIUMF) 12

Top level web display

Annotated code

11

2 July 2015 Rolf Seuster (TRIUMF) 7

 Choose first the project, then follow path to your favourite package

Include-what-you-use

12

• ASan (address)
Similar to Valgrind but much faster and catches more; output
maybe a bit intimidating...
ABI incompatible.
• TSan (thread)
Currently not useful ‘out of the box’ for Atlas

Run-time Sanitizers

==7552==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x61400000ffd4 at
pc 0x400825 bp 0x7fff248f7d80 sp 0x7fff248f7d78...

HepMcParticleLink.h:72:51: runtime error: left shift of 200001 by 16 places cannot be
represented in type ’int’

• UBSan (undefined behaviour)
Clear warnings; easy to implement :

Implemented in nightly tests of DBG builds:

Investigated:

13

"If all you have is a hammer,
everything looks like a nail"
- Psychology of Science (Maslow, 1966)

Coding to solve the line-by-line problems revealed by
these tools might produce better code, but it won’t
forcibly produce good code.

“Code smell” detectors (tentative results so far):
 •TCToolkit
 ~1 hr to scan release, produces >50Mb html.

- code duplication detector (looks useful)
- token tag cloud (“how noisy” the code is)
- class co-occurence matrix (interdependencies)

14

Summary
•All of these tools are useful as developer aids;

Coverity in particular reveals many programming
errors and maintainability issues.

• Public league tables help motivate groups.
• None of these will replace peer review or make up

for a lack of education (another important topic) or
experience.

ATLAS will continue to use these tools, integrating
the reports from different analyses, and keep an eye
on new tools as they become available.

15

