
The certification
process of the
LHCb distributed
computing
software

F. Stagni, C. Haen
on behalf of the LHCbDIRAC team

● What’s DIRAC
● What’s LHCbDIRAC
● How we do QA for LHCbDIRAC

○ And when

Today’s agenda

What’s DIRAC

diracgrid.org github.com/DIRACGrid

“A software framework for distributed
computing”

● open source
● used by 20+ VOs
● developed mostly by LHCb
● python 2
● ~200K lines only its core
● has few extensions, e.g. WebDIRAC
● 2 or 3 releases per year

What’s LHCbDIRAC

lhcbdirac svn/lhcbdirac

“The LHCb extension of DIRAC”

● ~120K lines of code
● everything that is LHCb specific
● each release has a strict dependency from a DIRAC

release
● LHCbWebDIRAC extends WebDIRAC

The LHCbDIRAC dev team

● ~12 FTE, high variance
● Mostly based at CERN

○ but not all
● Many are developers for a fraction of their

time
● We all develop for DIRAC and for

LHCbDIRAC
○ And for WebDIRAC, LHCbWebDIRAC, ...

● SCRUM is almost impossible
○ we evaluated it, then gave up

Theory

Developers QA team

Operations
team

Practice

QA team
O

perations
team

Developers

QA

● For us it mostly means releasing without fear
● We also have coding guidelines

○ And we use static code analyzers
● We don’t aim at “industry standards”

There are some approaches to
consider

So, how to test it all?

One
approach

This practice has actually a
name: “TiP”

And it is often combined
with “Exposure control”, i.e.
exposing new features to

few Guinea pigs

TiP
TiP has actually been the main only way for testing LHCbDIRAC for years!

Pros:
● No need for QA team!
● Easy way to test your luck factor
Cons:
● Disasters might be around the

corner

The other
approach

Writing unit tests:
● Looks like a good thing

to do
● And it is good to do
● And it’s true that you’ll

end doing a lot of this

What’s wrong with
unit tests

You can’t write unit tests for everything
● The backbone of DIRAC is in its

configuration
● There are services, and agents, and DBs
● And there is the Grid

○ Several CE types, and several SEs
○ And external services

● Mocks become too complex

The third
approach

● Do Unit tests for what can be unit tested
● Do Integration tests for what can be

integration tested
● Do Regression tests for what can be…

regression tested
● Do System tests for...
● TiP for everything else

This is what we call the certification process

Testing becomes a
certification process

● We automate what we can automate
○ Static code analysis
○ Unit tests
○ Integration tests
○ Regression tests

● Then, there are guidelines
○ For system tests

● And the rest is art

Who’s responsible
for what

● Unit tests are written by the code developers
○ They are part of the released code

● Most of the Integration tests are also written
by the developers
○ In a separate repository

● Regression tests are written by the QA
○ In the same separate repository

● System tests are defined by the QA
○ On paper

Automation with
Jenkins

● Static code analysis with pylint
● Python nose for finding and running the UT

○ Cobertura for coverage of the UT
● Integration tests:

○ Install (LHCb)DIRAC, install all the DBs on a
separate instance, run all the services, try them out

○ Run a pilot, run user and production jobs locally
○ Run a pilot, match a test job

● Regression tests
○ Run a pilot, run old user and production jobs locally

System tests in a
sandbox

● We install the pre-release (AKA release
candidate) in a separate “setup”

● We do things that we would normally do in
production:
○ Send pilots, run jobs, run productions
○ Write files, replicate them, remove them
○ …
○ We have guidelines, commands set, etc...

The problem of
impossible isolation

● There’s not such a thing like a “test Grid”
○ If we submit (pilot) jobs in certification, they go to the

same CEs and WNs as our production jobs
○ The SEs used in production are the same as the

ones used in certification
○ And the same FTS server
○ ...and so on

● And the Configuration Server for all “setups”
is the same

Yay, all tests passing!

Credits:
@dave1010

Can we test it all?

No, we can’t test everything
(obviously)

● But we considerably increased the percentage of tested code
● And boosted our confidence in doing (also) big changes
● Every time we find some problems in production (and this always happens)

we think if and how we could have spotted the problem during certification
○ and if we could, code a test

Problems encountered

● We started writing tests for code that was
(almost never) tested
○ It was “exercised”...
○ So, lots of refactoring (still) going on

● Biggest problem: convincing all developers
that’s actually useful

ToDo list

● DIRAC Pull Request -> Jenkins
● Not yet moved LHCbDIRAC to GIT

○ https://gitlab.cern.ch/
■ And then we can use Jenkins tests as automated review system

What we don’t (yet) plan
to do

● Performance tests
● Scaling tests
● Strict code reviews

We are here to learn

In summary

● Testing is a lot of encapsulation
● Run tests in the sandbox when you can
● Be consistent, don’t give up
● TiP can’t be completely avoided

?

