
Writing robust C++ code
Miguel Ojeda (CERN)

1st Developers@CERN Forum

2015-10-29

1 / 32

C++ is complex
Can you tell me what is the output of this program?

namespace tools {
 template <typename T> void print(T x) {
 std::cout << x << std::endl;
 }

 template <typename T> void print_repeat(T x, int n) {
 for (int i = 0; i < n; ++i)
 print(x);
 }
}

namespace something {
 struct A { };
 std::ostream & operator<<(std::ostream & os, A) { return os << 42; }
}

int main() {
 tools::print_repeat(something::A(), 4);
 return 0;
}

// ... more code ...

2 / 32

C++ is complex
Can you tell me what is the output of this program?

namespace tools {
 template <typename T> void print(T x) {
 std::cout << x << std::endl;
 }

 template <typename T> void print_repeat(T x, int n) {
 for (int i = 0; i < n; ++i)
 print(x);
 }
}

namespace something {
 struct A { };
 std::ostream & operator<<(std::ostream & os, A) { return os << 42; }
}

int main() {
 tools::print_repeat(something::A(), 4);
 return 0;
}

namespace something {
 void print(A) {
 std::cout << "No, you cannot..." << std::endl;
 }

}

C++ is complex
I hereby present you C++ valid programs...

3 / 32

4 / 32

C++ is complex
I hereby present you C++ valid programs...

bool r = phrase_parse(first, last,
 // Begin grammar
 (
 '(' >> double_[ref(rN) = _1]
 >> -(',' >> double_[ref(iN) = _1]) >> ')'
 | double_[ref(rN) = _1]
),
 // End grammar

 space);

Source: Boost Spirit [1]

5 / 32

C++ is complex
I hereby present you C++ valid programs...

assert((o-----o
 | !
 ! !
 ! !
 ! !
 o-----o).area == (o---------o
 | !
 ! !
 o---------o).area);

Source: eelis.net [2]

6 / 32

C++ is complex
I hereby present you C++ valid programs...

assert((o-------------o
 |L \
 | L \
 | L \
 | o-------------o
 | ! !
 ! ! !
 o | !
 L | !
 L | !
 L| !
 o-------------o).volume == (o-------------o
 | !
 ! !
 ! !
 o-------------o).area

 * int(I-------------I));

Source: eelis.net [2]

7 / 32

C++ is complex
Multiple inheritance

8 / 32

C++ is complex
Multiple inheritance

Exceptions

9 / 32

C++ is complex
Multiple inheritance

Exceptions

RAII

10 / 32

C++ is complex
Multiple inheritance

Exceptions

RAII

ADL

11 / 32

C++ is complex
Multiple inheritance

Exceptions

RAII

ADL

SFINAE

12 / 32

C++ is complex
Multiple inheritance

Exceptions

RAII

ADL

SFINAE

...

13 / 32

C++ is complex
C++ templates are Turing-complete. [3]

14 / 32

C++ is complex
C++ templates are Turing-complete. [3]

Therefore, compiling C++ is undecidable.

15 / 32

C++ is complex
C++ templates are Turing-complete. [3]

Therefore, compiling C++ is undecidable.

Assuming no template instantiation limits

16 / 32

C++ is complex
C++ templates are Turing-complete. [3]

Therefore, compiling C++ is undecidable.

Assuming no template instantiation limits

But not only that, just parsing C++ is undecidable as well. [4]

17 / 32

C++ is complex
See why:

template <...> struct TuringMachine {
 // Insert implementation of a Turing machine here
};

struct SomeType {};

template <typename T> struct S {
 static int name;
};

template<> struct S<SomeType> {
 typedef int name;
};

int x;
int main() {
 S<TuringMachine<...>::output>::name * x;
}

Source: Josh Haberman [4]

18 / 32

Writing robust C++
So how do we write robust C++?

19 / 32

Writing robust C++
So how do we write robust C++?

Of course, one should profit from common topics in software
development.

20 / 32

Writing robust C++
So how do we write robust C++?

Of course, one should profit from common topics in software
development.

However, for C++, several extra guidelines apply...

21 / 32

Writing robust C++
Your compiler is your friend:

Enable all warnings

Any (global) exception should be justified

Treat all warnings as errors

Do not allow commits with warnings

Enable stack protection/canaries

For all (or most) functions, if performance allows

Enable any other hardening/fortify options available

They are useful not only for security reasons

22 / 32

Writing robust C++
Diversity is good:

Use several compilers

In particular, their latest version

Compile and test for several architectures/operating
systems, if possible

Bonus: gives you access to extra debuggers/tools

Simulate your code, if possible

You can go down to simulating the memory hierarchy,
if you need

Test all debug, release and optimized builds

23 / 32

Writing robust C++
Consider useful libraries that add low overhead:

Use a different allocator

Memory-tagging allocators (even in release builds)
Debugging allocators (heap checkers)

Use checked STL library

e.g. -D_GLIBCXX_DEBUG

24 / 32

Writing robust C++
Avoid fancy C++ features unless strictly required:

Multiple inheritance, ADL, templates, SFINAE...

If you use them, be prepared to justify why they were
needed

Before starting a project, consider carefully exceptions and
RTTI

25 / 32

Writing robust C++
Establish strict coding guidelines:

Pick an existing one, if possible.

Enforce them through the compiler/tools, if possible.

26 / 32

Writing robust C++
Include all the tools that you can in your test environment:

valgrind's memcheck and helgrind/drd

gcc's and clang's memory/thread/u.b. sanitizers

clang-format

Coverity

...

27 / 32

Writing robust C++
And above all, write defensive code:

Use checked/safer functions/methods, if performance
allows

e.g. at() vs. operator[]
e.g. memmove() vs. memcpy()
e.g. strlcpy() vs. strncpy()

Use RAII everywhere, if using exceptions

28 / 32

Writing robust C++
And above all, write defensive code:

Provide the basic exception guarantee

Minimize size of functions/methods to accomplish it

Write down and check pre/post conditions and class
invariants

Even in release builds, if performance allows

...

29 / 32

Summary
C++ is a complex language with complex features. Therefore:

1. Aim for simplicity, whenever possible

Require complexity to be justified and documented

2. Take advantage of compilers, tools and everything you can

Many are easy to setup, free and/or open source

3. Use as much runtime-protection/checking as possible

Most likely you can spare the overhead

4. Set up strict, justified development guidelines and rules

Well worth it for team projects

30 / 32

Questions?

31 / 32

References
[1] eelis.net. Multi-Dimensional Analog Literals. 2006.

[2] The Boost Team. Boost Spirit Library. 2015.

[3] Todd L. Veldhuizen. C++ Templates are Turing Complete.
2003.

[4] Josh Haberman. Parsing C++ is literally undecidable. 2013.

