
The benefits of SOLID in 

software development

Ruben Agudo Santos (GS-AIS-HR)



Table of contents

 What is SOLID?

 Single Responsibility Principle

 Open-Closed Principle

 Liskov’s Substitution Principle

 Interface Segregation Principle

 Dependency Inversion Principle

 Why we should care 

 QA

 Bibliography



What is SOLID?

Uncle Bob

Not a state of matter



Single Responsibility Principle

“THERE SHOULD NEVER BE MORE THAN ONE REASON FOR A CLASS TO CHANGE”



Single Responsibility Principle



Single Responsibility Principle



Open-Closed Principle

“SOFTWARE ENTITIES SHOULD BE OPEN FOR EXTENSION, BUT CLOSED FOR MODIFICATION”



Open-Closed Principle

public void DrawAllShapes(Shape[] shapes) {

for (int i = 0; i < shapes.length; i++) {

Shape s = shapes[i];

switch(s.itsType) {

case Shape.SQUARE:

drawSquare((Square) s);

break;

case Shape.CIRCLE:

drawCircle((Circle) s);

break;

}

}

}



Open-Closed Principle

public void DrawAllShapes(Shape[] shapes) {

for (int i = 0; i < shapes.length; i++) {

Shape s = shapes[i];

s.draw();

}

}



Liskov Substitution Principle

“FUNCTIONS THAT USE POINTERS OR REFERENCES TO BASE CLASSES MUST BE ABLE TO USE 

OBJECTS OF DERIVED CLASSES WITHOUT KNOWING IT”



Liskov Substitution Principle



Liskov Substitution Principle

Moral of the story:

 Model the classes based on behavior.

 “...when redefining a routine [in a derivative], you may only replace its precondition by a 

weaker one, and its postcondition by a stronger one.”



Interface Segregation Principle

“CLIENTS SHOULD NOT BE FORCED TO DEPEND UPON INTERFACES THAT THEY DO NOT USE”



Interface Segregation Principle



Interface Segregation Principle



Dependency Inversion Principle

A. “HIGH LEVEL MODULES SHOULD NOT DEPEND UPON LOW LEVEL MODULES. BOTH SHOULD 

DEPEND UPON ABSTRACTIONS”

B. “ABSTRACTIONS SHOULD NOT DEPEND UPON DETAILS. DETAILS SHOULD DEPEND UPON 

ABSTRACTIONS”



Dependency Inversion Principle

void Copy() {

int c;

while ((c = readKeyboard()) != EOF) {

writePrinter(c);

}

}



Dependency Inversion Principle

enum OutputDevice {printer, disk};

void Copy(outputDevice dev) {

int c;

while ((c = ReadKeyboard()) != EOF)

if (dev == printer) WritePrinter(c);

else WriteDisk(c);

}



Dependency Inversion Principle

abstract class Reader {

public abstract int read();

};

abstract class Writer {

public abstract void write(char);

};

void copy(Reader r, Writer w) {

int c;

while((c=r.Read()) != EOF)

w.Write(c);

}



Why we should care

 Cleaner code (Remember Ben Wolff’s presentation)

 Code smells are kept away

 Codebase that is maintainable and expandable

 Usually integrated in Agile methodologies, i.e. Scrum



QA

THANKS FOR COMING!



Bibliography

Robert C. Martin

http://www.objectmentor.com/resources/articles/srp.pdf

http://www.objectmentor.com/resources/articles/ocp.pdf

http://www.objectmentor.com/resources/articles/lsp.pdf

http://www.objectmentor.com/resources/articles/isp.pdf

http://www.objectmentor.com/resources/articles/dip.pdf

Duck Panel

https://lostechies.com/derickbailey/2009/02/11/solid-development-principles-in-motivational-pictures/

Robert C. Martin Photo

Uploaded by Tim-bezhashvyly, under CC BY-SA 4.0

http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/ocp.pdf
http://www.objectmentor.com/resources/articles/lsp.pdf
http://www.objectmentor.com/resources/articles/isp.pdf
http://www.objectmentor.com/resources/articles/dip.pdf
https://lostechies.com/derickbailey/2009/02/11/solid-development-principles-in-motivational-pictures/

