Ruben Agudo Santos (GS-AIS-HR)

O O OO OO O OO

What is SOLID?¢
Single Responsibility Principle

Open-Closed Principle

Liskov's Substitution Principle
Interface Segregation Principle
Dependency Inversion Principle
Why we should care

QA

Bibliography

Not a state of matter

Uncle Bob

“THERE SHOULD NEVER BE MORE THAN ONE REASON FOR A CLASS TO CHANGE"

dial(String pno): void

hangup(): void recv(): char

“SOFTWARE ENTITIES SHOULD BE OPEN FOR EXTENSION, BUT CLOSED FOR MODIFICATION”

public void DrawAllShapes(Shape[] shapes) {
for (int i = 0.4 's.length; i++) {
Shar=

+ side: double

+ center: Point

~inCLE:
arawCircle((Circle) s);

break;

public void DrawAllShapes(Shape[] shapes) {
Etenis tends for (int i = @; i < shapes.length; i++) {
_— Shape s = shapes[i];

cCircle
+side: double +radius: double S. dr‘aW() 5

+ center: Point + center: Point }

==gnumeration==
ShapeEnum

“FUNCTIONS THAT USE POINTERS OR REFERENCES TO BASE CLASSES MUST BE ABLE TO USE
OBJECTS OF DERIVED CLASSES WITHOUT KNOWING IT"

LISKOV SUBSTITUTION PRINCIPLE

If It Looks Like A Duck, Quacks Like A Duck, But Needs Batteries - You
Probably Have The Wrong Abstraction

Moral of the story:

O Model the classes based on behavior.

O *"...when redefining a routine [in a derivative], you may only replace its precondition by a
weaker one, and its posfcondition by a stronger one.”

“CLIENTS SHOULD NOT BE FORCED TO DEPEND UPON INTERFACES THAT THEY DO NOT USE”

Nehicle

+ color: Color

+ power: double + power: double

A. "HIGH LEVEL MODULES SHOULD NOT DEPEND UPON LOW LEVEL MODULES. BOTH SHOULD
DEPEND UPON ABSTRACTIONS™

B. “ABSTRACTIONS SHOULD NOT DEPEND UPON DETAILS. DETAILS SHOULD DEPEND UPON
ABSTRACTIONS”

void Copy() {
int c;
while ((c = readKeyboard()) != EOF) {

writePrinter(c);

Keyboard

enum OutputPr nter, disk};

ev) {

zukeyboard()) != EOF)
(dev == printer) WritePrinter(c);

else WriteDisk(c);

Feader

KeyboardReader

PrinterWriter

ScreenWriter

abstract class Reader {

public abstract int read();
}s

abstract class Writer {

public abstract void write(char);

s

void copy(Reader r, Writer w) {
int c;
while((c=r.Read()) != EOF)

w.Write(c);

O Cleaner code (Remember Ben Wolff's presentation)

O Code smells are kept away
O Codebase that is maintainable and expandable

O Usudlly integrated in Agile methodologies, i.e. Scrum

THANKS FOR COMING!

Robert C. Martin

http://www.objectmentor.com/resources/articles/srp.pdf

http://www.objectmentor.com/resources/articles/ocp.pdf

http://www.objectmentor.com/resources/articles/Isp.pdf

http://www.objectmentor.com/resources/articles/isp.pdf

http://www.objectmentor.com/resources/articles/dip.pdf

Duck Panel
https://lostechies.com/derickbailey/2009/02/11/solid-development-principles-in-motivational-pictures/

Robert C. Martin Photo
Uploaded by Tim-bezhashvyly, under CC BY-SA 4.0

http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/ocp.pdf
http://www.objectmentor.com/resources/articles/lsp.pdf
http://www.objectmentor.com/resources/articles/isp.pdf
http://www.objectmentor.com/resources/articles/dip.pdf
https://lostechies.com/derickbailey/2009/02/11/solid-development-principles-in-motivational-pictures/

