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Outline

• Introduction to CORAL and COOL

• Software quality and testing for CORAL and COOL

– Functional tests

– Performance tests

• Conclusions
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CORAL & COOL – introduction

• CORAL: a generic relational database access layer
– Used by ATLAS, CMS and LHCb and internally by COOL

• Conditions data, trigger configuration data, geometry data...

• Main entry point to physics data in Oracle (directly or via Frontier)

• COOL: a set of libraries and tools for handling time 

variation and versioning in “conditions databases”
– Used by ATLAS and LHCb throughout LHC data taking

• Example: detector calibration for Sep 2015 from latest algorithm

• Both COOL and CORAL are written in C++
– Bindings for Python also exist (PyCool and PyCoral)

– COOL also implies developing and optimizing SQL queries 
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CORAL – generic DB access layer
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COOL – conditions data model
While CORAL is a generic access layer, COOL includes the 

design of a relational schema and the optimization of SQL 

queries for a specific data model for conditions data
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Lifecycle and collaborations

• CORAL and COOL started over 10 years ago (2004)

– As separate subprojects of LCG Persistency Framework

• Two teams, overall O(10) developers from IT and LHC experiments

• Example of successful common software project of LHC experiments  

– Now managed together and largely in maintenance mode

• Single team with minimal manpower, overall less than O(1 FTE)

• External collaborations for infrastructure and testing

– PH-SFT: external packages, nightly/release builds and tests

• See yesterday’s presentation by Patricia Mendez Lorenzo

– IT-DB and experiment DBAs: Oracle service and support

• Essential interaction during the optimization and testing phases

https://indico.cern.ch/event/404359/contribution/16
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Development process overview

• Activity is driven by LHC experiment requirements
– Release on demand, with no predefined schedule

– CORAL and COOL largely in maintenance mode now
• Releases mainly due to external software upgrades (e.g. Boost, 

ROOT), new compiler ports, new infrastructure (e.g. cmake)…

– The move from ROOT5 to ROOT6 especially triggered a lot of work

• Essentially no new feature requests, only the occasional bug fixes

• CORAL & COOL built as part of LCG software stack
– Release installation on AFS by PH-SFT (for ATLAS & LHCb)

• Agreed set of software versions (e.g. LCG_79) and platforms

• Internal build with cmake, integration with lcgcmake 

• Nightly builds and tests using Jenkins and CDash
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CORAL & COOL – testing and QA

• A priority – but no formal method, just common sense

– Believe that early tests/QA save you time in the long term!

– Mainly functional tests, but also other tests and QA policies

• COOL used ~ test-driven development from the start

– Write unit tests as (or before) you write the implementation

• Deterministic approach – you know what your code should do

• This also helps the design of interfaces – what should code look like
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Multi-platform support & SW quality

• CORAL & COOL are built on a range of platforms

– Using different C++ compilers/linkers enhances SW quality

• Same code for all, only minimal platform-dependent sections

– As a general rule, all build warnings are fixed, not ignored
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Currently: gcc4, gcc5, clang, icc (Linux, Mac)

In the past: MSVC (Microsoft)

https://indico.cern.ch/event/404359/contribution/16
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Nightly builds and tests – CDash

• CDash dashboard: main access to see nightly results

– Individual CORAL or COOL logs available on failures

Get details of failing package (not necessarily CORAL or COOL!) 
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Nightly builds and tests – Jenkins

• The Jenkins dashboard provides additional low-level 

information that has not been propagated to CDash

– The full lcgcmake driver log is available here
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Functional test suites

• Mainly CppUnit (C++) and unittest (Python) assert-based tests
– Blurred border between “unit” and “integration” tests – name is irrelevant

• Most tests involve external software packages (ROOT) and services (Oracle)

• Rather “large” coverage, but no explicit metric
– Years ago we used gcov for a while to improve coverage

– Bugs reported by users systematically lead to new tests (reproducibility!)

• All database back-ends are systematically tested
– Oracle (also with Frontier or CoralServer read-back), SQLite, MySQL

• Also requires maintenance of server infrastructure (partly dedicated, partly shared)

• Careful test speed optimization for Oracle (slow DDL from table creation/deletion) 

• Functional test suites assembled using QMTest
– Very old, but does the job! – might move to ctest at some point

– Long suites for full tests (~ 2 hours), shorter for Jenkins/CDash nightlies
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CORAL “network glitch” tests

• Complex implementation issues require complex test design!

– Here’s just one representative example

• A few CORAL segmentation faults observed around 2010

– Due to buggy legacy implementation of reaction to lost connections

– Ad-hoc testing framework was developed to reproduce these issues 

• Using synchronized killing of SSH tunnels to simulate a lost connection

• This test framework was essential to allow a proper fix / reimplementation

• Now part of the standard functional test suite
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CoralServer tests for ATLAS HLT

• CoralServer is an essential component of the ATLAS High 

Level Trigger system since data-taking in October 2009

– From design through implementation to deployment in only 9 months

– Aggressive timescale was only possible thanks to rigorous testing!

• Two complementary sets of tests

– Artificial ad-hoc unit tests

– Standalone integration test application using full ATLAS HLT software 

• Need for testing included upfront in modular component design

– Clean separation of networking, marshalling and RDBMS components

• Allowed them to be implemented and tested independently of each other
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Static code analysis
• Coverity (PH-SFT service)

– Advantage of having own instance: 

keep history and triage defects!

• One-off scans – all CORAL or 

COOL defects now fixed

– Ignore issues from external 

packages (Boost, gcc, Qt…)
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Profilers and other tools

• Various profilers have been used for CORAL and COOL
– Most recently and effectively: valgrind, IgProf and gperftools

– Mainly ad-hoc “campaigns”, no systematic use of any of these

• Memory profiling – valgrind
– Successfully used in the past to fix a few CORAL memory leaks

– May run the full test suite through it but seldom do so

• CPU and elapsed time profiling – gperftools
– Successfully used in the past to fix CORAL unneeded DB roundtrips

– But SQL speed optimization is generally more relevant (next slide)

• And then of course other very different debugging tools
– When hope is almost lost: gdb, strace…
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COOL – Oracle performance tests (1/2)

• COOL involves the design and optimization of the 

relational schema and SQL queries for its data model

– SQL speed is more relevant than C++ speed for COOL

• Main issue: unstable Oracle SQL execution plans

– Comprehensive test and QA strategy (Oracle tutorial 2013)

• Stabilization of execution plans using SQL hints

• One-click tool to run client tests and build a detailed performance 

report including plots and info gathered from server-side trace files 

• No large-scale stress tests: small-scale tests on O(100k) rows are 

enough to extrapolate scalability (it’s only the slope that matters…)

https://indico.cern.ch/event/245109/
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Oracle 10.2.0.5 Oracle 10.2.0.5

COOL – Oracle 

performance report

Flat = OK! 

(Production, with hints)

Slope = NOT OK! 

(Control test, no hints)

SQL execution plan

(from server-side trace file)

NB: different vertical scales
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• Was it worth all this effort? Yes, definitely!

– Test infrastructure was developed to react to issues, but 

became a tool for proactive QA (e.g. in software upgrades)

• Oracle server migration 10g to 11g: detecting a problem in Oracle 

11.2.0.2 (and its resolution in 11.2.0.3) was a matter of days

• Oracle server migration 11g to 12c: very fast validation checks

Oracle 11.2.0.2 Oracle 11.2.0.3

COOL – Oracle performance tests (2/2)

NB: different vertical scales
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Conclusions

• Testing and QA are top priorities in CORAL / COOL

– Tests account for 30% of software (100k/300k lines of code),  

probably for even more of the development time and effort

– Functional tests (from unit tests to complex integration tests), 

performance tests, static code analysis and other QA tools…

• Test-driven development pays off (and is fun!)

– Including tests upfront is easier and more efficient than trying 

to add them a posteriori (and preventing is better than fixing)

• Designing and implementing tests is just as important 

as developing libraries and applications!


