
A. Valassi – QA for CORAL and COOL Developers@CERN Forum – 29h Sep 2015 1

Quality assurance for

CORAL and COOL
within the LCG software stack

for the LHC experiments

Andrea Valassi
(CERN IT-SDC)

“Developers@CERN” Forum – 29th September 2015

A. Valassi – QA for CORAL and COOL Developers@CERN Forum – 29h Sep 2015 2

Outline

• Introduction to CORAL and COOL

• Software quality and testing for CORAL and COOL

– Functional tests

– Performance tests

• Conclusions

2

A. Valassi – QA for CORAL and COOL Developers@CERN Forum – 29h Sep 2015 3

CORAL & COOL – introduction

• CORAL: a generic relational database access layer
– Used by ATLAS, CMS and LHCb and internally by COOL

• Conditions data, trigger configuration data, geometry data...

• Main entry point to physics data in Oracle (directly or via Frontier)

• COOL: a set of libraries and tools for handling time

variation and versioning in “conditions databases”
– Used by ATLAS and LHCb throughout LHC data taking

• Example: detector calibration for Sep 2015 from latest algorithm

• Both COOL and CORAL are written in C++
– Bindings for Python also exist (PyCool and PyCoral)

– COOL also implies developing and optimizing SQL queries

3

A. Valassi – QA for CORAL and COOL Developers@CERN Forum – 29h Sep 2015 4

DB lookup XML

COOL C++ API

OracleAccess
(CORAL Plugin)

OCI C API

CORAL C++ API (DB technology independent)

Oracle

DB

SQLiteAccess
(CORAL Plugin)

SQLite C API

MySQLAccess
(CORAL Plugin)

MySQL C API

MySQL

DB
SQLite

DB (file)

OCI

OCI

FrontierAccess
(CORAL Plugin)

Frontier API

CoralAccess
(CORAL Plugin)

coral protocol

Frontier

Server
(web server)

CORAL

server

JDBC

http coral

Squid
(web cache)

CORAL

proxy
(cache)

coral

coral

http

http

XMLLookupSvc

XMLAuthSvc

(CORAL Plugins)

Authentication XML

(file)

CORAL plugins interface to 5 back-ends

- Oracle, SQLite, MySQL (commercial)

- Frontier (maintained by FNAL)

- CoralServer (maintained in CORAL)

(No longer used)

C++ code of LHC experiments

use CORAL

directly

Component architecture

COOL libraries

PyCool

Python code

of LHC experimentsCORAL and COOL

mainly provide client

software components

(CORAL server / proxy

are the only exceptions)

A. Valassi – QA for CORAL and COOL Developers@CERN Forum – 29h Sep 2015 5

CORAL – generic DB access layer

A. Valassi – QA for CORAL and COOL Developers@CERN Forum – 29h Sep 2015 6

COOL – conditions data model
While CORAL is a generic access layer, COOL includes the

design of a relational schema and the optimization of SQL

queries for a specific data model for conditions data

A. Valassi – QA for CORAL and COOL Developers@CERN Forum – 29h Sep 2015 7

Lifecycle and collaborations

• CORAL and COOL started over 10 years ago (2004)

– As separate subprojects of LCG Persistency Framework

• Two teams, overall O(10) developers from IT and LHC experiments

• Example of successful common software project of LHC experiments

– Now managed together and largely in maintenance mode

• Single team with minimal manpower, overall less than O(1 FTE)

• External collaborations for infrastructure and testing

– PH-SFT: external packages, nightly/release builds and tests

• See yesterday’s presentation by Patricia Mendez Lorenzo

– IT-DB and experiment DBAs: Oracle service and support

• Essential interaction during the optimization and testing phases

https://indico.cern.ch/event/404359/contribution/16

A. Valassi – QA for CORAL and COOL Developers@CERN Forum – 29h Sep 2015 8

Development process overview

• Activity is driven by LHC experiment requirements
– Release on demand, with no predefined schedule

– CORAL and COOL largely in maintenance mode now
• Releases mainly due to external software upgrades (e.g. Boost,

ROOT), new compiler ports, new infrastructure (e.g. cmake)…

– The move from ROOT5 to ROOT6 especially triggered a lot of work

• Essentially no new feature requests, only the occasional bug fixes

• CORAL & COOL built as part of LCG software stack
– Release installation on AFS by PH-SFT (for ATLAS & LHCb)

• Agreed set of software versions (e.g. LCG_79) and platforms

• Internal build with cmake, integration with lcgcmake

• Nightly builds and tests using Jenkins and CDash

A. Valassi – QA for CORAL and COOL Developers@CERN Forum – 29h Sep 2015 9

CORAL & COOL – testing and QA

• A priority – but no formal method, just common sense

– Believe that early tests/QA save you time in the long term!

– Mainly functional tests, but also other tests and QA policies

• COOL used ~ test-driven development from the start

– Write unit tests as (or before) you write the implementation

• Deterministic approach – you know what your code should do

• This also helps the design of interfaces – what should code look like

A. Valassi – QA for CORAL and COOL Developers@CERN Forum – 29h Sep 2015 10

Multi-platform support & SW quality

• CORAL & COOL are built on a range of platforms

– Using different C++ compilers/linkers enhances SW quality

• Same code for all, only minimal platform-dependent sections

– As a general rule, all build warnings are fixed, not ignored

P
.
M

e
n

d
e

z
 L

o
re

n
z
o

’s
 t
a

lk

Currently: gcc4, gcc5, clang, icc (Linux, Mac)

In the past: MSVC (Microsoft)

https://indico.cern.ch/event/404359/contribution/16

A. Valassi – QA for CORAL and COOL Developers@CERN Forum – 29h Sep 2015 11

Nightly builds and tests – CDash

• CDash dashboard: main access to see nightly results

– Individual CORAL or COOL logs available on failures

Get details of failing package (not necessarily CORAL or COOL!)

A. Valassi – QA for CORAL and COOL Developers@CERN Forum – 29h Sep 2015 12

Nightly builds and tests – Jenkins

• The Jenkins dashboard provides additional low-level

information that has not been propagated to CDash

– The full lcgcmake driver log is available here

A. Valassi – QA for CORAL and COOL Developers@CERN Forum – 29h Sep 2015 13

Functional test suites

• Mainly CppUnit (C++) and unittest (Python) assert-based tests
– Blurred border between “unit” and “integration” tests – name is irrelevant

• Most tests involve external software packages (ROOT) and services (Oracle)

• Rather “large” coverage, but no explicit metric
– Years ago we used gcov for a while to improve coverage

– Bugs reported by users systematically lead to new tests (reproducibility!)

• All database back-ends are systematically tested
– Oracle (also with Frontier or CoralServer read-back), SQLite, MySQL

• Also requires maintenance of server infrastructure (partly dedicated, partly shared)

• Careful test speed optimization for Oracle (slow DDL from table creation/deletion)

• Functional test suites assembled using QMTest
– Very old, but does the job! – might move to ctest at some point

– Long suites for full tests (~ 2 hours), shorter for Jenkins/CDash nightlies

A. Valassi – QA for CORAL and COOL Developers@CERN Forum – 29h Sep 2015 14

CORAL “network glitch” tests

• Complex implementation issues require complex test design!

– Here’s just one representative example

• A few CORAL segmentation faults observed around 2010

– Due to buggy legacy implementation of reaction to lost connections

– Ad-hoc testing framework was developed to reproduce these issues

• Using synchronized killing of SSH tunnels to simulate a lost connection

• This test framework was essential to allow a proper fix / reimplementation

• Now part of the standard functional test suite

A. Valassi – QA for CORAL and COOL Developers@CERN Forum – 29h Sep 2015 15

CoralServer tests for ATLAS HLT

• CoralServer is an essential component of the ATLAS High

Level Trigger system since data-taking in October 2009

– From design through implementation to deployment in only 9 months

– Aggressive timescale was only possible thanks to rigorous testing!

• Two complementary sets of tests

– Artificial ad-hoc unit tests

– Standalone integration test application using full ATLAS HLT software

• Need for testing included upfront in modular component design

– Clean separation of networking, marshalling and RDBMS components

• Allowed them to be implemented and tested independently of each other

A. Valassi – QA for CORAL and COOL Developers@CERN Forum – 29h Sep 2015 16

Static code analysis
• Coverity (PH-SFT service)

– Advantage of having own instance:

keep history and triage defects!

• One-off scans – all CORAL or

COOL defects now fixed

– Ignore issues from external

packages (Boost, gcc, Qt…)

A. Valassi – QA for CORAL and COOL Developers@CERN Forum – 29h Sep 2015 17

Profilers and other tools

• Various profilers have been used for CORAL and COOL
– Most recently and effectively: valgrind, IgProf and gperftools

– Mainly ad-hoc “campaigns”, no systematic use of any of these

• Memory profiling – valgrind
– Successfully used in the past to fix a few CORAL memory leaks

– May run the full test suite through it but seldom do so

• CPU and elapsed time profiling – gperftools
– Successfully used in the past to fix CORAL unneeded DB roundtrips

– But SQL speed optimization is generally more relevant (next slide)

• And then of course other very different debugging tools
– When hope is almost lost: gdb, strace…

A. Valassi – QA for CORAL and COOL Developers@CERN Forum – 29h Sep 2015 18

COOL – Oracle performance tests (1/2)

• COOL involves the design and optimization of the

relational schema and SQL queries for its data model

– SQL speed is more relevant than C++ speed for COOL

• Main issue: unstable Oracle SQL execution plans

– Comprehensive test and QA strategy (Oracle tutorial 2013)

• Stabilization of execution plans using SQL hints

• One-click tool to run client tests and build a detailed performance

report including plots and info gathered from server-side trace files

• No large-scale stress tests: small-scale tests on O(100k) rows are

enough to extrapolate scalability (it’s only the slope that matters…)

https://indico.cern.ch/event/245109/

A. Valassi – QA for CORAL and COOL Developers@CERN Forum – 29h Sep 2015 19

Oracle 10.2.0.5 Oracle 10.2.0.5

COOL – Oracle

performance report

Flat = OK!

(Production, with hints)

Slope = NOT OK!

(Control test, no hints)

SQL execution plan

(from server-side trace file)

NB: different vertical scales

A. Valassi – QA for CORAL and COOL Developers@CERN Forum – 29h Sep 2015 20

• Was it worth all this effort? Yes, definitely!

– Test infrastructure was developed to react to issues, but

became a tool for proactive QA (e.g. in software upgrades)

• Oracle server migration 10g to 11g: detecting a problem in Oracle

11.2.0.2 (and its resolution in 11.2.0.3) was a matter of days

• Oracle server migration 11g to 12c: very fast validation checks

Oracle 11.2.0.2 Oracle 11.2.0.3

COOL – Oracle performance tests (2/2)

NB: different vertical scales

A. Valassi – QA for CORAL and COOL Developers@CERN Forum – 29h Sep 2015 21

Conclusions

• Testing and QA are top priorities in CORAL / COOL

– Tests account for 30% of software (100k/300k lines of code),

probably for even more of the development time and effort

– Functional tests (from unit tests to complex integration tests),

performance tests, static code analysis and other QA tools…

• Test-driven development pays off (and is fun!)

– Including tests upfront is easier and more efficient than trying

to add them a posteriori (and preventing is better than fixing)

• Designing and implementing tests is just as important

as developing libraries and applications!

