
Remigius K Mommsen
Fermilab

Verification Steps for the
CMS Event-Builder Software

Remi Mommsen – September 29, 2015

CMS Event Builder
Detector front-end (custom electronics)

~700 front-end drivers (FEDs) with ~2kB/fragment at 100 kHz

Front-End Readout Optical Link (FEROL)
Optical 10 GbE TCP/IP

Data Concentrator switches
Data to Surface

Aggregate into 40 GbE links

72 Readout Units (RUs)
Combine FEROL fragments into super-fragment

Event Builder switch
Infiniband FDR 56 Gbps CLOS network

62 Builder Units (BUs)
Event building

Temporary recording to RAM disk

Filter Units (FUs) (~16k cores in ~900 boxes)
Run HLT selection using files from RAM disk

Select O(1%) of the events for permanent storage

2

µTCA FEDs

576 x 10 GbE 
200 m

72 x 40 GbE

72 x 64 IB 56 Gbps

Remi Mommsen – September 29, 2015

Event-Builder Software
Event builder is part of the CMS Online Software suite (c.f. talk from Luciano)

C++ software compiled with gcc 4.4.7 (no C++11)

~15k lines of code (excluding the framework)

Controlled by CMS run-control via SOAP messages

Consists of 3 applications derived from same templated base class
1 event manager (EVM)

Orchestrates the event building

Receives the trigger information

71 readout-units (RUs)

62 builder-units (BUs)

O(40) threads per application for different tasks and to parallelize tasks
All threads are pinned to a given CPU core

Optimized for I/O performance
Threads & memory located close to Ethernet NICs

Data transfers over Infiniband uses RDMA

Code for checking event integrity is CPU limited

3

Remi Mommsen – September 29, 2015

Versatile Code
Event-builder (EvB) not only used in production

fedKit stand-alone application for lab-bench use

Same code with different XML configuration

Controlled by user-friendly python script

miniDAQ system to readout parts of subsystems

Small scale version of production system

Used for testing, debugging or calibrating subsystems

6 independent setups separated from central DAQ

Local DAQ systems maintained by sub-system groups

Provide data integrity checking and error reporting
Extensive checking of the data

Ability to dump events to disk at various stages

Detailed error reports

4

Remi Mommsen – September 29, 2015

Testing Procedure

Testing of new a new version goes over multiple steps
Unit tests

Stand-alone test cases

System integration test bed (daq2val)

Production system

5

Remi Mommsen – September 29, 2015

Unit Tests

Standalone C++ applications, i.e. not using any testing f/w

Mostly used for testing algorithms
Is the correct value returned especially for edge cases?

Test critical & well isolated parts
Run many times to catch memory corruption or data races

Pros:
Easy to debug and profile

Cons:
Works only for isolated part of the code

Virtually impossible to test interplay of applications

6

Remi Mommsen – September 29, 2015

Stand-alone Test Cases
A small setup on a single machine

1 EVM & 0-2 RUs & 1-4 BUs

Dummy data is generated inside the applications or with a separate
application emulating the front end

Based on python scripts (~1000 lines of code)
Generation of XML configurations to setup the test case

Start and stop the XDAQ applications

Emulate a simplified run control environment

Drive the system through different scenarios

Check states and parameters of applications

~50 test cases implemented (~2000 lines of code)
Behavior using different settings

Emulate failures and edge cases

Running all tests takes ~30 minutes

7

Remi Mommsen – September 29, 2015

Example of a Test Case

Check that EVM goes into SyncLoss state if data is skipped
Define a configuration with 1 EVM and 1 RU, each with 4
dummy FEROLs as input, and one BU

Run the test by starting the system, skip an event, and check that
application states are okay and the event was dumped to a file

8

Remi Mommsen – September 29, 2015

Running the Test Cases

2 modes of running the tests
Test case can be run individually in an interactive mode

Mostly useful for debugging

All test cases are run automatically and logged

Done after any significant change to the code

Tests are independent of the XDAQ build system

9

Remi Mommsen – September 29, 2015

Pros & Cons of Test Cases

Pros:
Very flexible to test the code under various situations

Writing a new test case before the code asserts its indented
behavior

Assures that changes do not break other parts

Some test cases reproduce an error seen in production

Cons:
Cannot test interfaces with the outside world

E.g. run control or monitoring

No tests of performance

Tests can be run on multiple machines to measure performance

Not used so far

Reliably reproducing race conditions virtually impossible

10

Remi Mommsen – September 29, 2015

System Integration Test Bed
Small scale version (~5%) of the production system

Uses the same hardware versions

Has all XDAQ services

Uses the full run control and configuration framework

Detached from production system

Pros:
Allows to test the interaction with the other components

Can be used to assess code performance

Measure the overall performance

Inspect running code with perf

Cons:
Too small to see any scaling issues

Very limited ability to test error scenarios

No automatic testing

11

Remi Mommsen – September 29, 2015

Production System

The ultimate testing environment

Pros:
Full scale tests of scaling and performance

Real detector data spans all cases of failures

Cons:
Limited availability for tests

Failures at this stage quickly translate into lost luminosity

12

Remi Mommsen – September 29, 2015

Summary

The event-builder s/w is a critical part of the CMS DAQ
system

Any failure translates into lost luminosity

Interacts with many other components

Tool to commission and debug front-end readout (h/w & f/w)

Testing is done on several scales
Unit tests to test cases up to full scale tests with the production
system

Possible improvements for the future

Automatic testing in daq2val test-bed with failure scenarios

Automated and regular performance measurements

Use a testing framework for some or all steps?

13

