Verification Steps for the
CMS Event-Builder Software

Remigius K Mommsen
Fermilab

UTCA FEDs

:\ 1

e

o
o
72 x 40 GbE

CHO i
bd 72 x 64 IB 56 Gbps

o
-

3

200 m

9765 0SGBE

CMS Event Builder

Detector front-end (custom electronics)
0 ~700 front-end drivers (FEDs) with ~2kB/fragment at 100 kHz

Front-End Readout Optical Link (FEROL)
a Optical 10 GbE TCP/IP

Data Concentrator switches
0O Data to Surface
0O Aggregate into 40 GbE links

72 Readout Units (RUs)
0 Combine FEROL fragments into super-fragment

Event Builder switch
Q Infiniband FDR 56 Gbps CLOS network

62 Builder Units (BUs)
O Event building
O Temporary recording to RAM disk

Filter Units (FUs) (~16k cores in ~900 boxes)
O Run HLT selection using files from RAM disk

O Select O(1%) of the events for permanent storage

Remi Mommsen — September 29, 2015

Event-Builder Software

Event builder is part of the CMS Online Software suite (c.f. talk from Luciano)
0O C++ software compiled with gcc 4.4.7 (no C++11)
0 ~15k lines of code (excluding the framework)

0 Controlled by CMS run-control via SOAP messages

Consists of 3 applications derived from same templated base class

O 1 event manager (EVM)
o Orchestrates the event building
o Receives the trigger information

Q 71 readout-units (RUs)
Q 62 builder-units (BUs)

O(40) threads per application for different tasks and to parallelize tasks
O All threads are pinned to a given CPU core

Optimized for 1/O performance
O Threads & memory located close to Ethernet NICs
0O Data transfers over Infiniband uses RDMA
0 Code for checking event integrity is CPU limited

Remi Mommsen — September 29, 2015 3

R i o ey

Versatile Code

Event-builder (EvB) not only used in production

0 fedKit stand-alone application for lab-bench use
o Same code with different XML configuration

o Controlled by user-friendly python script

O miniDAQ system to readout parts of subsystems
o Small scale version of production system
o Used for testing, debugging or calibrating subsystems

o 6 independent setups separated from central DAQ

O Local DAQ systems maintained by sub-system groups

Provide data integrity checking and error reporting
O Extensive checking of the data
0 Ability to dump events to disk at various stages

O Detailed error reports

Remi Mommsen — September 29, 2015

Testing Procedure

Testing of new a new version goes over multiple steps
O Unit tests
O Stand-alone test cases
O System integration test bed (dag2val)

O Production system

Remi Mommsen — September 29, 2015 5

Unit Tests

Standalone C++ applications, i.e. not using any testing f/w

Mostly used for testing algorithms

O Is the correct value returned especially for edge cases?

Test critical & well isolated parts

O Run many times to catch memory corruption or data races

Pros:
O Easy to debug and profile

Cons:
O Works only for isolated part of the code

0 Virtually impossible to test interplay of applications

Remi Mommsen — September 29, 2015 6

Stand-alone Test Cases

A small setup on a single machine
0O 1EVM & 0-2 RUs & 1-4 BUs

O Dummy data is generated inside the applications or with a separate
application emulating the front end

Based on python scripts (~1000 lines of code)
O Generation of XML configurations to setup the test case
O Start and stop the XDAQ applications
0O Emulate a simplified run control environment
O Drive the system through different scenarios

O Check states and parameters of applications

~50 test cases implemented (~2000 lines of code)
O Behavior using different settings
0O Emulate failures and edge cases

O Running all tests takes ~30 minutes

Remi Mommsen — September 29, 2015 7

Example of a Test Case

Check that EVM goes into Syncloss state if data is skipped

O Define a configuration with T EVM and 1 RU, each with 4
dummy FEROLs as input, and one BU

O Run the test by starting the system, skip an event, and check that
application states are okay and the event was dumped to a file

def fillConfiguration(self,symbolMap):
evm = RU(symbolMap, [

('inputSource', 'string’, 'Socket') def runTest(self):
D self.configureEvB()
for id in range(0,4): self.enableEvB(runNumber=1)
self._config.add(FEROL(symbolMap,evm,id)) self.checkEVM(8192)
self.checkRU(8192)
ru = RU(symbolMap, [self.checkBU(16384)
("inputSource', 'string’, 'Socket"')
D print("Skipping an event on FED 2")
for id in range(4,8): self.setAppParam('skipNbEvents', 'unsignedInt','1',"FEROL',2)
self._config.add(FEROL(symbolMap,ru,id)) time.sleep(5)
self.checkAppState("SyncLoss","EWM")
self._config.add(evm) self.checkAppState("Enabled","RU")
self._config.add(ru) self.checkAppState("Enabled","BU")
self.checkAppParam('eventRate', 'unsignedInt’,@,operator.eq,"EVM")
self._config.add(BU(symbolMap, [dumps = self.getFiles("dump_run@odd0l_event[0-9]+_fedddO2.txt$")
('dropEventData’', 'boolean', 'true'), if len(dumps) != 1:
('lumiSectionTimeout', 'unsignedInt','@") raise ValueException("Expected one FED dump file, but found: "+str(dumps))
DO self.haltEvB()

Remi Mommsen — September 29, 2015 8

Running the Test Cases

2 modes of running the tests

O Test case can be run individually in an interactive mode

o Mostly useful for debugging

O All test cases are run automatically and logged

o Done after any significant change to the code

Tests are independent of the XDAQ build system

Z2x1_logNormal : 09:52:29 09:52:39 g
2x1_mismatch : 99:52:39 09:53:30 QLIS
2x1_mismatch_ptfrl : 09:53:30 09:54:20 gL
2x1_multiFEDs : 09:54:20 09:54:30 g
2x1_preallocate : 09:54:30 09:54:41 g3
2x1_ratelLimit : 99:54:41 09:55:11 g
2x1_singleRequest : 99:55:11 ©09:55:21 QLRI
2x1_smallBlockSize : 09:55:21 ©09:55:32 Rt
2x1_write : ©09:55:32 99:56:33 R
2x2_cloud : 09:56:33 09:56:57 QLT
2x2_failBu : ©9:56:57 ©09:58:07 g VRN ValueError: EVM claims 332198 events were built, while BU count gives 332218 events
2x2_lslatency : 09:58:07 ©09:58:27 QLT
Z2x2_quarantined : 09:58:27 09:58:41 g 137
2x2_stale : 09:58:41 09:58:55 RLEHL
3x1 : ©9:58:55 ©09:59:11 g3
— :

Remi Mommsen — September 29, 2015 9

Pros & Cons of Test Cases

Pros:

O Very flexible to test the code under various situations

O Writing a new test case before the code asserts its indented
behavior

O Assures that changes do not break other parts

O Some test cases reproduce an error seen in production

Cons:
O Cannot test interfaces with the outside world
o E.g. run control or monitoring

O No tests of performance
o Tests can be run on multiple machines to measure performance

o Not used so far

O Reliably reproducing race conditions virtually impossible

Remi Mommsen — September 29, 2015 10

System Integration Test Bed

Small scale version (~5%) of the production system
O Uses the same hardware versions
O Has all XDAQ services
O Uses the full run control and configuration framework

0O Detached from production system

Pros:
O Allows to test the interaction with the other components

O Can be used to assess code performance
o Measure the overall performance

o Inspect running code with perf

Cons:
O Too small to see any scaling issues
O Very limited ability to test error scenarios

O No automatic testing

Remi Mommsen — September 29, 2015 [

Production System

The ultimate testing environment

Pros:
a Full scale tests of scaling and performance

O Real detector data spans all cases of failures

Cons:
QO Limited availability for tests

O Failures at this stage quickly translate into lost luminosity

Remi Mommsen — September 29, 2015 i

Summary

The event-builder s/w is a critical part of the CMS DAQ
system

O Any failure translates into lost luminosity
Q Interacts with many other components

O Tool to commission and debug front-end readout (h/w & f/w)

Testing is done on several scales

O Unit tests to test cases up to full scale tests with the production
system

O Possible improvements for the future
o Automatic testing in dag2val test-bed with failure scenarios
o Automated and regular performance measurements

o Use a testing framework for some or all steps?

Remi Mommsen — September 29, 2015 1%

