A Modest Proposal* for presenting the results of Exotica Searches

Conor Henderson CERN 23 February 2009

* Jonathan Swift, "A Modest Proposal For Preventing the Children of Poor People in Ireland from being a Burden to their Parents or Country, and for Making Them Beneficial to the Public" (1729) - He proposed that the children be eaten!

Conor Henderson

CERN

As Things Stand Today

- Components of a typical New Physics search:
 - Choose a signature, or set of signatures
 - Determine SM backgrounds, including detector effects
 - Study the data
 - If no significant excess, set limits on some model parameters that can be tested by this signature
- Obvious limitation of this approach:
 - the models tested are only a small fraction of those that could be tested (including models not yet thought of)
- Undesirable consequence:
 - can result in theorists running PGS, trying to reanalyze experimental data to study some other model

Why is it done this way?

- Experimental limits are based on the absence of 'unexpected' events in the data
- Model limits arise from: what values of the parameters are compatible with not producing these events which are not there?
- So we are talking in terms of events which pass the detector acceptance and analysis ID selections
- But the process of detector simulation is essentially a non-invertible function:

Going with the Grain

- I don't have a general solution to this 'noninvertibility' problem
- Instead I make a Modest Proposal that should enhance the possibility to test other models against the data later
- This approach 'goes with the grain' of modeltesting in HEP

A Modest Proposal for Future Searches

- In addition to what is already done, propose that experiments should also:
- Archive the data and SM backgrounds (with uncertainties) for the studied channels as histograms, not as just as plots
- Archive the algorithm(s) to set limits based on comparing data to SM+some specific proposed signal
- Validate that the experiment's Fast Simulation adequately reproduces the detector acceptance for this channel

Flow of Operations

What Difference does this make?

- Makes future model-testing much easier
- The only required input is a new set of signal events; all other needed infrastructure is ready
- So any theorist with a new model to test need simply produce signal events at generator level – everything else happens automatically and out pops the result
- Advantage for the experimentalist: no extra work involved everything is already done as part of normal analysis process, it's just that now we archive it more usefully

Further Thoughts

 Once this is standard procedure, perhaps we can consider an interface which automatically generates the events (eg using Madgraph with input of new particles/interactions) and runs the whole process?

- compare QUAERO interface to D0 Run I and H1 data ...

• Need to consider how we publish the new limit: short article by "A. Theorist and the CMS Collaboration"? (obviously must cite original paper that gives the data and SM backgrounds)

Summary

- Presented a Modest Proposal for expanding the use of results from dedicated New Physics searches
- As part of analysis, should archive the data and SM backgrounds as histograms, save the limitsetting code and validate Fast Simulation for the channel
- Then any other model in the future can easily be tested simply from a set of generator-level MC events

