VECTOR BOSON SCATTERING AT ATLAS

V. Erkcan Özcan *University College London* On behalf of the ATLAS Collaboration

LHC2FC WS @ CERN, February 12, 2009

- Details on various aspects of what is in this presentation can be obtained from:
 - Expected Performance of the ATLAS Experiment Detector, Trigger, Physics, CERN-OPEN-2008-020 [arXiv:0901.0512].
 - The ATLAS Experiment at the CERN Large Hadron Collider, J. Instrum. 3 (2008) S08003.

ATLAS DETECTOR

7000 tones

- Tracking and muon coverage: |η|<2.5
- Calorimeters with presamplers: |η|<1.8
- Forward calorimeters : 3.2<|η|<5.9
- VB Scattering @ ATLAS V. E. Özcan, UCL

- e/γ energy resolution
 - σ/E ≈ 10-15%/√E ⊕ ~1%
- Central jet energy resolution
 - $\sigma/E \approx 60\%/\sqrt{E} \oplus 3\%$
- Missing E_{x,y} resolution
 - $\sigma \approx 0.55 \text{GeV} \times \sqrt{(\Sigma E_T)}$
- Track inverse-P_T resolution

 $\sigma_{1/PT} \approx 35 \text{TeV}^{-1} \times (1 \oplus 50/P_T)$

 Muon system standalone momentum resolution

 $\sigma/P_T < 10\%$ up to 1 TeV

Backup slides: η dependence

MEASURING TGCS

- Cross-sections @ LHC ~ $10 \times \sigma$ @ Tevatron
- All electron and muon decay channels (except νννν) studied for WW, WZ, ZZ, Wγ, Zγ.
- WW, WZ, ZZ with MC@NLO; Wγ,Zγ with Pythia.
 - BHO and BosoMC to extract event weights for a grid of anomalous TGCs.
- Analysis using boosted decision trees.
- Maximum log likelihood to extract limits.

10

SENSITIVITY TO TGCS

Lumi. fb ⁻¹	λ_z	$\Delta \kappa_Z$	Δg_1^Z	$\Delta \kappa_{\gamma}$	λ_{γ}
Same and	WZ	WW	WZ	WW	Wγ
1	[-0.028,0.024]	[-0.117,0.187]	[-0.021,0.054]	[-0.24,0.25]	[-0.09,0.04]
10	[-0.015,0.013]	[-0.035,0.072]	[-0.011,0.034]	[-0.088,0.089]	[-0.05,0.02]
30	[-0.012,0.008]	[-0.026,0.0048]	[-0.005,0.023]	[-0.056,0.054]	[-0.02,0.01]
D0/CDF best	[-0.13,0.14]	[-0.82,1.27]		[-0.88,0.96]	[-0.2,0.2]

Luminosity fb ⁻¹	f_4^Z	f_5^Z	f_4^{γ}	f_5^{γ}
1	[-0.018,0.018]	[-0.018,0.019]	[-0.022,0.022]	[-0.022,0.022]
10	[-0.009,0.009]	[-0.009,0.009]	[-0.01,0.01]	[-0.011,0.01]
30	[-0.006,0.006]	[-0.006,0.007]	[-0.008,0.008]	[-0.008,0.008]
LEP	[-0.3,0.3]	[-0.34,0.38]	[-0.17,0.19]	[-0.32,0.36]

 95% CL limits on charged and neutral anomalous TGCs.

EXPERIMENTER'S GOAL

- In short: Measure differential scattering cross-section as a function of VV center-of-mass energy.
 - Identify VV at high momenta, within certain well-defined η range.
 - Try to make sure they interacted with each other (ie. reject BGs)
 - Measure invariant mass spectrum
 - Hope to see a resonance or a total cross-section significantly different than SM prediction
 - If not, publish spectrum with efficiency corrections, ask theorists to extract constraints
- Do all these as model-independently as possible.

EW CHIRAL LAGRANGIAN

$$\begin{aligned} \mathcal{L}_{1} &= \alpha_{1}gg' \operatorname{tr} \left[\Sigma \mathbf{B}_{\mu\nu} \Sigma^{\dagger} \mathbf{W}^{\mu\nu} \right] \\ \mathcal{L}_{2} &= i\alpha_{2}g' \operatorname{tr} \left[\Sigma \mathbf{B}_{\mu\nu} \Sigma^{\dagger} [V^{\mu}, V^{\nu}] \right] \\ \mathcal{L}_{3} &= i\alpha_{3}g \operatorname{tr} \left[\mathbf{W}_{\mu\nu} [V^{\mu}, V^{\nu}] \right] \\ \mathcal{L}_{4} &= \alpha_{4} (\operatorname{tr} [V_{\mu} V_{\nu}])^{2} \\ \mathcal{L}_{5} &= \alpha_{5} (\operatorname{tr} [V_{\mu} V^{\mu}])^{2} \\ \mathcal{L}_{5} &= \alpha_{6} \operatorname{tr} [V_{\mu} V_{\nu}] \operatorname{tr} [TV^{\mu}] \operatorname{tr} [TV^{\nu}] \\ \mathcal{L}_{7} &= \alpha_{7} \operatorname{tr} [V_{\mu} V^{\mu}] \operatorname{tr} [TV_{\nu}] \operatorname{tr} [TV^{\nu}] \\ \mathcal{L}_{8} &= \frac{1}{4} \alpha_{8} g^{2} (\operatorname{tr} [T\mathbf{W}_{\mu\nu}])^{2} \\ \mathcal{L}_{9} &= \frac{i}{2} \alpha_{9} g \operatorname{tr} [T\mathbf{W}_{\mu\nu}] \operatorname{tr} [T[V^{\mu}, V^{\nu}]] \\ \mathcal{L}_{10} &= \frac{1}{2} \alpha_{10} (\operatorname{tr} [TV_{\mu}] \operatorname{tr} [TV_{\nu}])^{2} \\ \mathcal{L}_{11} &= \alpha_{11} g \epsilon^{\mu\nu\rho\lambda} \operatorname{tr} [TV_{\mu}] \operatorname{tr} [V_{\nu} \mathbf{W}_{\rho\lambda}] \end{aligned}$$

- See Tao's talk from tuesday's discussion session.
- (α₄, α₅) are the main parameters to modify for the VV scattering.
- Needs unitarization.

RESONANCES

 Padé unitarization gives good description for π-scattering in QCD.

Following, Dobado et al (PRD62, 055011) we connect (α_4, α_5) to mass, width, spin & presence of resonances.

 Modify the longitudinal VV scattering processes in Pythia (73-77) by editing routine PYSGHG.

• Vector WZ and scalar ZZ resonances, both vector and scalar WW resonances possible. Also a non-resonant sample is generated with $(\alpha_4, \alpha_5)=(0,0)$.

MONTE CARLO CHECKS

Signal: Crosscheck modified *Pythia* against *Whizard*

(no effective W approximation, Kmatrix unitarization)

tī: MC@NLO, Herwig, Jimmy W/7+3/4 iets:

W/Z+3/4 jets: Madgraph (crosschecked against Alpgen)

SINGLE JET METHOD

- All WW, WZ, ZZ final states, except qqqq, llll and vvvv, and no tau channels.
- Particularly interesting are semi-leptonic channels.
 - Technique proposed by Butterworth et al. in 2002 (PRD 65, 096014) to reconstruct hadronically decaying vector bosons as single jets.
 - Test on full-simulation data and improvements.

HADRONIC VBS: 1 OR 2 JETS

- At high enough P_T, hadronic VB starts to end up in a single jet.
- In each event: Take highest P_T jet. Mass close to W/Z ?

Yes: This jet is the VB candidate. Apply cut on jet substructure.

No: Loop over all pairs of jets. Find the pair whose combination gives the highest P_T. The combination is the VB candidate. Apply mass and relative-momentum cuts.

W MASS RESOLUTIONS

- Generator level reconstruction vs. reconstruction after detector simulation
- Good agreement, slight shift in mean due to incorrect e-calibration.
 - Fast simulation also in good agreement with full.

VB Scattering @ ATLAS - V. E. Özcan, UCL

JET STRUCTURE

- k_T merging intrinsically ordered in scale.
 - Undo last merging: Get the Y-scale at which the jet would split into two subjets.
 - Y-scale ~ $O(m_{VB}/2)$ ~ k_T of one subjet wrt. other

PUTTING IT TOGETHER

Chut	Non-resonant Signal		$t\bar{t}$ Background		W+jets Backgrounds	
Cut	Efficiency (%)	σ (fb)	Efficiency (%)	σ (fb)	Efficiency (%)	σ (fb)
Starting sample	-	10	_	450000	_	21365
$\equiv 1$ Hadronic W	38.0 ± 0.7 (41)	3.8(4.1)	$18.9 \pm 0.1 \ (19)$	85000 (84000)	8.3 ± 0.1 (9)	1760 (1820)
$\equiv 1$ Leptonic W	48.2 ± 1.1 (55)	1.8(2.3)	$22.1 \pm 0.2 \ (29)$	19000 (25000)	$23.3 \pm 0.7 \; (31)$	410 (570)
p_T (Had. W) > 200 GeV	82.1 ± 1.3 (86)	1.5(1.9)	$16.8 \pm 0.4 \ (20)$	3200 (5000)	$34.4 \pm 1.7 \ (43)$	140(240)
$ \eta $ (Had. W) < 2	94.4 ± 0.8 (94)	1.4(1.8)	$90.3 \pm 0.7 \ (90)$	2900 (4500)	80.1 ± 2.4 (77)	110 (190)
p_T (Lep. W) > 200 GeV	90.4 ± 1.1 (87)	1.3(1.6)	$34.5 \pm 1.3 \ (29)$	990 (1300)	$48.5 \pm 3.3 \; (40)$	55(75)
$ \eta $ (Lep. W) < 2	96.0 ± 0.8 (96)	1.2(1.5)	$94.6 \pm 1.0 \ (90)$	930 (1200)	80.4 ± 3.9 (79)	44 (59)
$\equiv 2 \text{ tag jets}$	45.1 ± 2.0 (54)	0.6(0.8)	$8.1 \pm 1.3 \ (10)$	76 (120)	$13.9 \pm 3.5 \ (22)$	6 (13)
$\equiv 0$ top candidates	56.5 ± 3.0 (47)	0.3(0.4)	$7.9 \pm 4.4 \;(\;2)$	5(2)	$60.5 \pm 13.1 \ (23)$	4 (3)
Central jet veto	91.1 ± 2.3 (94)	0.3(0.4)	< 50 (< 25)	< 5 (< 1)	84.9 ± 13.7 (91)	3 (3)
Trigger efficiency	98 ± 1	0.3(0.4)	~ 100	< 5 (< 1)	82 ± 16	3 (3)

• Two VB candidates: $P_T > 200$ GeV and $|\eta| < 2$.

- Two tag jets: $|\eta| > 2$, $P_T > 20$ GeV, E > 300 GeV, $\Delta \eta > 4.4$
- No W + other jet close to top mass.
- No central jets with $P_T > 30$ GeV.
- Triggering no problem, thanks to many high P_T objects.

• Few% signal efficiency

• *tt* negligible

• *V*+jets reduced by $> 10^4$

RESULTS

WZ (lvll)

WW (lvqq)

Process	Cross-section (fb)		Luminosity (fb^{-1})		Significance
	signal	background	for 3σ	for 5σ	for 100 fb^{-1}
$WW/WZ \rightarrow \ell \nu \ jj, \ 500 \ { m GeV}$	0.31 ± 0.05	0.79 ± 0.26	85	235	3.3 ± 0.7
$WW/WZ \rightarrow \ell \nu \ jj, \ 800 \ { m GeV}$	0.65 ± 0.04	0.87 ± 0.28	20	60	6.3 ± 0.9
$WW/WZ \rightarrow \ell \nu \ jj, \ 1.1 \ { m TeV}$	0.24 ± 0.03	0.46 ± 0.25	80	230	3.3 ± 0.8
$W_{jj}Z_{\ell\ell}, 500 { m GeV}$	0.28 ± 0.04	0.20 ± 0.18	30	90	5.3 ± 1.9
$W_{\ell u}Z_{\ell\ell},500{ m GeV}$	0.40 ± 0.03	0.25 ± 0.03	20	55	6.6 ± 0.5
$W_{jj}Z_{\ell\ell},800{ m GeV}$	0.24 ± 0.02	0.30 ± 0.22	60	160	3.9 ± 1.2
$W_j Z_{\ell\ell},800~{ m GeV}$	0.20 ± 0.02	0.09 ± 0.06	30	90	5.3 ± 1.3
$W_j Z_{\ell\ell}, 1.1 { m TeV}$	0.11 ± 0.01	0.10 ± 0.06	90	250	3.1 ± 0.8
$W_{\ell u}Z_{\ell\ell}, 1.1 { m TeV}$	0.070 ± 0.004	0.020 ± 0.009	70	200	3.6 ± 0.5
$Z_{ u u}Z_{\ell\ell}, 500 \; { m GeV}$	0.32 ± 0.02	0.15 ± 0.03	20	60	6.6 ± 0.6

50-100 fb⁻¹ to see first possible resonances

NEXT FEW YEARS

- TGC period: With even as low as few hundred pb⁻¹, competitive limits will be possible. Will keep on getting better up to tens of fb⁻¹, when systematic uncertainties become important.
- Model-dependent search period: With O(10 fb⁻¹), various discoveries could be possible for some resonances in models like technicolor.
 - Some recent fast simulation studies in arXiv:0802.3715.
- Generic searches for VV resonances with few tens of fb⁻¹.
 - Worse than earlier optimistic estimates the first full simulation study with more reliable background estimates.
- Spectrum era: Hundreds of fb⁻¹ to extract a spectrum up to ~2TeV.
 - Measuring angular distributions, spin measurements, etc.
- Techniques developed <u>applicable to real data</u>.
 - Good agreement between fast and full simulation. Jet structure analyses useful in many other topics: heavy quarks, single jet tops, HV, SUSY particles, etc.

VB Scattering @ ATLAS - V. E. Özcan, UCL

BACKUPS

containing a stochastic term, a constant term containing a stochastic term, a constant term and a noise term.

and a noise term.

Figure 10.35: Expected stand-alone and combined fractional momentum resolution as a function of p_T for single muons with $|\eta| < 1.1$.

Figure 10.36: Expected stand-alone and combined fractional momentum resolution as a function of p_T for single muons with $|\eta| > 1.7$.

Track parameter	$0.25 < \eta < 0.50$		$1.50 < \eta < 1.75$	
	$\sigma_X(\infty)$	p_X (GeV)	$\sigma_X(\infty)$	p_X (GeV)
Inverse transverse momentum (q/p_T)	0.34 TeV^{-1}	44	0.41 TeV^{-1}	80
Azimuthal angle (ϕ)	$70 \mu rad$	39	92 µrad	49
Polar angle ($\cot \theta$)	0.7×10^{-3}	5.0	1.2×10^{-3}	10
Transverse impact parameter (d_0)	10 µm	14	12 µm	20
Longitudinal impact parameter $(z_0 \times \sin \theta)$	91 µm	2.3	71 µm	3.7

Table 3: Expected track-parameter resolutions (RMS) at infinite transverse momentum, $\sigma_X(\infty)$, and transverse momentum, p_X , at which the multiple-scattering contribution equals that from the detector resolution (see Eq. (1)). The momentum and angular resolutions are shown for muons, whereas the impact-parameter resolutions are shown for pions (see text). The values are shown for two η -regions, one in the barrel inner detector where the amount of material is close to its minimum and one in the end-cap where the amount of material is close to its maximum. Isolated, single particles are used with perfect alignment and calibration in order to indicate the optimal performance. $\sigma_X(p_T) = \sigma_X(\infty)(1 \oplus p_X/p_T)$

READY FOR FIRST BEAM

- MDT: >99% of chambers stable
- RPC: All 16 sectors commissioned (2 have missing HV supplies, 1 has noise on clock propagation)
- TGC: All wheels ready
- CSC: Chambers work, but read-out being worked on.
- LAr Cal: 0.02% isolated (dead) channels, 0.8% dead read-out, 1 of 8 Had EC PS needs replacement
- Tilecal: 2 of 256 sectors off (PS problem), only 0.2% isolated (dead) channels.
- Pixels: >95% of modules stable
- SCT: 97.6% of EC & 99.8% of barrel operational
- TRT: 98% of channels operational

TGCS EFF. LAGRANGIAN

Effective Lagrangian for charged TGCs

$$L/g_{WWV} = ig_{1}^{V}(W_{\mu\nu}^{*}W^{\mu}V^{\nu} - W_{\mu}^{*}V_{\nu}W^{\mu\nu}) + i\kappa_{V}W_{\mu}^{*}W_{\nu}V^{\mu\nu} + i\frac{\lambda_{V}}{M_{W}^{2}}W_{\rho\mu}^{*}W_{\nu}^{\mu}V^{\rho\nu}$$

Effective Lagrangian for neutral TGCs

$$L_{ZZV} = -\frac{e}{M_Z^2} [f_4^V(\partial_{\mu}V^{\mu\beta})Z_{\alpha}(\partial^{\alpha}Z_{\beta}) - f_5^V(\partial^{\sigma}V_{\sigma\mu})\widetilde{Z}^{\mu\beta}(\partial^{\alpha}Z_{\beta})] \qquad \widetilde{Z}^{\mu\beta} = \frac{1}{2} \varepsilon_{\mu\nu\rho\sigma} Z^{\rho\sigma}$$

Bauer, Rainwater, PRD 62,113011

At tree level, no s-channel in SM
f₄^V = 0 (CP invariance), f₅^V = 0 (P conservation)