Missing* Energy and Searches in CMS

* Transverse

- Motivation / Introduction
- Reconstruction methods
- Challenges in applications
- Outlook

Arnd Meyer

CMS

RWTH Aachen University

February 12, 2009

Motivation

[edit

Three quarters with missing transverse energy (MET)

Signatures

Final State Configuration

The following signatures refer to specific final state configurations that can, in principle, be observed at the LHC. If you are adding a signature, please choose a meaningful page name, and clearly indicates the signature (e.g. m jets / n leptons / MET). The database software does not like '+' symbols in the page-names, so avoid names like (m jets + n leptons), etc. Additionally, you may provide a short description of the signature.

1. Displaced Vertices Stable Charged Tracks 3. multi b-jets / 2 tau leptons / 2 charged tracks 4. multi b-jets / 1 tau lepton / MET 5. multi-jets / 2 b-jets / 2 SS leptons / MET 6. 2 jets / 2 OS tau leptons / MET 0 hard jets / 2 OSDF leptons / MET 0 hard jets / 3 leptons / MET (jet pT < 30 GeV) 9. 0 hard jets / 4 leptons / MET 10. 4 jets / multi-resonance 11. 4 tau leptons 4 e/mu leptons 13. 2 OSSF leptons / MET 14. 2 OSSF lepton pairs 15. 2 OSDF leptons / MET 16. multi-jets / 0 leptons / MET 17. multi-jets / 1 leptons / MET 18. multi-jets / 2 SS leptons / MET 19. multi-jets / 2 OS leptons / MET multi-jets / 3 leptons / MET

http://lhcsigs.physics.lsa.umich.edu

21.	2 jets / 2 OS leptons / MET
22.	2 jets / 2 b-jets / 1 lepton / MET
23.	2 jets / 3 leptons / MET
24.	2 jets / 4 leptons
25.	2 jets / MET
26.	1 photon / MET
27.	2 photons / MET
28.	2 photons / 2 leptons / MET
29.	2 photons / 1 jet / 2 leptons / MET
30.	2 photons / 4 jets / MET
31.	4 photons
32.	2 top-jets / 2 charm-jets / MET
33.	2 top-jets / 2 b-jets / 2 SS leptons / MET
34.	4 b-jets / 2 SS leptons / MET
35.	4 b-jets / 4 leptons / MET
36.	4 b-jets / 1 lepton / MET
37.	3 b-jets / 1 lepton / MET
38.	2 b-jets / 1 lepton / MET
39.	2 b-jets / 3 leptons / MET
40.	1 b-jet / OSSF leptons

Introduction

- Many models of new physics introduce particles that escape undetected, leading to apparent energy-momentum nonconservation → missing transverse energy (MET)
- Standard Model missing energy "small" in comparison
- Experimental challenges
 - Understand instrumental backgrounds (mismeasurements, "QCD")
 - For desired resolution, need entire detector (jets, unclustered energy, electrons, muons, taus, ...)
 - Control energy resolution over wide range, including low energy
 - Understand tails

Arnd Meyer (RWTH Aachen)

CMS Calorimeters

Forward calorimeter 2.9 < $|\eta|$ < 5:

Fe/quartz fibers

 $\Delta\eta \times \Delta \phi = \sim 0.175 \times 0.17$

EM calorimeter $|\eta| < 3$: PbW0₄ crystals 1 longitudinal section + PS 1.1 λ $\Delta\eta \times \Delta \phi = 0.0174 \times 0.0174$

Central Hadronic $|\eta| < 1.7$: Brass/scintillator 2 + 1 (Hadron Outer) long. sections 5.9 + 3.9 λ ($|\eta|$ =0) $\Delta\eta \times \Delta \phi = 0.087 \times 0.087$

Endcap Hadronic 1.3< |η| < 3 : Brass/scintillator + WLS 2/3 longitudinal sections 10λ

 $\Delta\eta \times \Delta\phi = \sim 0.15 \times 0.17$

Missing Transverse Energy

- Sum over calibrated energy deposits in semi-projective calorimeter towers
- Apply corrections a posteriori

• MET resolution $\sigma(E_T) = A \oplus B\sqrt{\Sigma E_T - D} \oplus C(\Sigma E_T - D)$

C = "Constant" Term D = "Offset"

A = "Noise" B = "Stochastic"

- Important considerations
 - A: Electronic noise
 - A: Pile-up and underlying event
 - A: High magnetic field (sweeps out low pt particles)
 - B: Good hermetic coverage, energy resolution
 - B: (Non-)compensating calorimeter response
 - C: Energy loss due to inactive material and punch through
 - C: Other residual non-linearities
 - D: Effects of noise and pile-up on scalar E₁

Performance

Corrections

- Orders of magnitude in MET
 - "Nothing"
 - Drell-Yan, ...
 - Small / medium (20-100 GeV)
 - top, W, H, ...
 - Large (several 100 GeV)
 - supersymmetry, large extra dimensions, …
- Corrections to achieve good performance in many topologies
 - Jet energy scale
 - e, μ, τ
 - Hot, dead, warm, ... channels
 - Vertex corrections

Corrections: Jet Energy Scale

CMS

Factorized multi-level jet corrections

- Offset: correct for pile-up and electronic noise (measure in zero-bias)
- **Relative** (η) : variations in jet response with eta
- **Absolute** (p_{τ}) : correct to particle level jets
- EMF: variations in jet response with electromagnetic energy fraction
- Flavor: variations in jet response according to flavor (uds, c, b, gluon)
- Underlying event
- Parton: correct measured jet p_T to parton level

Derive from MC simulation tuned on testbeam data for now, use real data as soon as available

Corrections: Jet Energy Scale

- Flatten jet response vs. eta
- Now MC-based, later data-driven (di-jet balance)

- Correct jet energy to particle level
- Now MC-based, later data-driven (p_τ balance in γ+jet, Z+jet)

Corrections: Jet Energy Scale

 Correct for variations in jet response as a function of electromagnetic energy fraction (non-compensating calorimeter, e/h ≠ 1)

$$\vec{E}_T^{\text{corr}} = \vec{E}_T - \sum_{i=1}^{N_{\text{jets}}} \left[\vec{p}_{T_i}^{\text{corr}} - \vec{p}_{T_i}^{\text{raw}} \right]$$

Small (separate) correction for reconstructed electrons possible

Corrections: Muons

CMS

- Muon leaves typically small deposit in calorimeters
- Correct using measurement in tracker and muon systems
- Also correct for muon energy deposition in calorimeters

$$\vec{E}_T = -\sum_{i=1}^{\text{towers}} \vec{E}_T^i - \sum_{T}^{\text{muons}} \vec{p}_T^{\mu} + \sum_{i=1}^{\text{deposit}} \vec{E}_T^i.$$

MET component Parallel to Z

- + muon correction
- + muon deposit

+ JES

Note totally different pT dependent resolutions of muons and calorimeter objects – A handful "straight" muons reconstructed with O(TeV) can destroy new physics sensitivity (or fake a discovery)

Corrections: Taus

- Applying standard jet corrections to pencil-like hadronic τ jets would lead to over-corrected MET
- Use particle flow algorithm (tracking + calorimeter) to correct for τ 's

$$\Delta \vec{E_T} = \sum \vec{E_T}^{\text{cal jet } 0.5} - \vec{E_T}^{\text{PF } \tau}$$

Solution Useful for analyses targeting τ 's in the final state

Data Quality

Arnd Meyer (RWTH Aachen) Arnd Meyer (RWTH Aachen) Apr 6, 2005 February 12, 2009 Page 19

Data Quality

September 2008 – MET in CMS

Halo muon

Performance depends on event content! (jets, e, mu, tau, ...)

Different <u>resolution</u> for different objects

Different <u>systematics</u> for different objects

Not all objects at the same level of "understanding" at a given time, especially in early running

Early MET Applications

Option (A): <u>"We'll plan for success"</u>

- Assume entire detector is basically available
- Assume systematic uncertainties can be controlled
- Many "TDR-style" analyses in this category
- Reflecting CMS capabilities correctly, but probably not what first results will look like
- Example: Typical cut-based search for supersymmetry in jets+MET
 - MET > 200 GeV
 - >=3 jets (|η|<1.7/3/3) with E₁>180/110/30 GeV
 - H_T (jet1, jet2, jet3, MET) > 500 GeV
 - Indirect lepton veto
 - Cleanup and anti-QCD selection (topological cuts)
 - Can find low mass SUSY (mSUGRA, LM1) with 100 pb⁻¹

Improvements

- Major backgrounds include QCD (mismeasured MET) and $Z \rightarrow \nu \nu$
- Several methods developed to constrain from data

QCD example:

- Two uncorrelated variables (or account for correlations)
- With separation power for signal and background
- In signal region C the background is

 Need to control signal contamination in A, B, D

Improvements: $Z \rightarrow vv$ (+ jets)

- Significant <u>irreducible background</u> to many searches: SUSY, monojets / monophotons (large extra dimensions etc.)
- Several methods to determine this background
 - Most direct: Z p_{τ} spectrum from Z $\rightarrow \mu\mu$ / ee decays, well established
 - But BF only 2 x 1/6 of vv

- Alternatively extrapolate from W $\rightarrow \mu v$ or γ + jets (gain 10-30 x statistics)
- Need to control lepton efficiencies,
 backgrounds / γ fake rates, trigger
 efficiencies, theoretical uncertainties

$Z \rightarrow \nu \nu$ background estimate (100 pb ⁻¹)			
MC-truth	35		
From γ +jets	$29 \pm 3 \text{ (stat)} \pm 5 \text{ (sys)}$		
From W+jets	$35 \pm 10 \text{ (stat)} \pm 8 \text{ (sys)} \pm 3 \text{ (theory)}$		

Arnd Meyer (RWTH Aachen)

(ADD monojets)

events for 100 pb⁻¹

10⁻²

 10^{-3}

10-4

Arnd Meyer (RWTH Aachen)

Improvements: $Z \rightarrow vv$ (+ jets)

- Significant irreducible background to many searches: SUSY, monojets / monophotons (large extra dimensions etc.)
- Several methods to determine this background

a)

200

1800 E^{miss} (GeV)

- Most direct: Z p_{τ} spectrum from Z $\rightarrow \mu\mu$ / ee decays, well established
- But BF only 2 x 1/6 of vv

CMS Preliminarv

Need to control lepton efficiencies, backgrounds / γ fake rates, trigger efficiencies, theoretical uncertainties

 $Z \rightarrow vv + jets MC$ Estimate from $W \rightarrow \mu v$

Early MET Applications

- Option (B): <u>"Be prepared for some failures"</u>
 - Assume most of the detector is basically available for MET
 - Expect that certain systematic uncertainties cannot be controlled
- Reduce exposure using data-driven techniques
- Simpler / more robust MET varieties
- **Example: Use MHT (missing H_{\tau}) instead of MET**
 - Does mostly require JES
 - More robust, especially for trigger

Model independent search MUSiC I

- MUSiC (Model Unspecific Search in CMS) performs a general scan of the data for deviations from the Standard Model expectation
- Classify events by particle content
 - Single isolated lepton always required
 - Exclusive vs. inclusive final states
- Scan distributions for statistically significant deviations
 - Presently Σp_{T} , invariant (transverse) mass, MET
 - Find "Region of Interest" = one or more connected bins with the biggest discrepancy between data and SM
- Includes systematic uncertainties

Model independent search MUSiC II

- Sensitive not only to new physics
- Can also uncover problems in simulation and detector

(equivalent for MET)

Early MET Applications

- Option (C): <u>"MET will not be usable for analysis"</u>
 - Assume systematic uncertainties cannot be controlled early on
- Example: Search for clever alternatives to MET
- SUSY in di-jet events
 - = 2 jets with $p_{T} > 50$ GeV, lepton veto
 - $H_T = p_{T_{j1}} + p_{T_{j2}} > 500 \text{ GeV}$
 - Angular/acceptance cuts for cleaning
 - New variable (Randall/Tucker-Smith):

$$\alpha = \frac{E_{T j2}}{M_{j1j2}} = \frac{E_{T j2}}{\sqrt{2E_1E_2(1 - \cos\theta)}} > 0.55$$

- MET not (directly) used
- Nevertheless, low mass (mSUGRA LM1) SUSY discovery with 100 pb⁻¹ possible

Conclusions and Outlook

- CMS
- Reconstructing MET is trivial, will be available on day one
- Workflows for most of the required or optional corrections at hand
- When will the entire chain be completed, and the ultimate resolution (?) be achieved? Probably 3 years after the LHC has been turned off
- When can MET be used for physics? Maybe sooner than one might imagine
 - First D0 Run II New Phenomena paper: GMSB (diphotons + MET)
 - Key: ability to measure all backgrounds from data
- Many refinements under development or in place, e.g.:
 - Track corrected MET (use tracks to replace charged particles)
 - Particle flow MET (optimally combine all CMS subdetectors for best resolution)
 - MET significance algorithm (optimally taking into account the uncertainties of all input objects)

Backup

Arnd Meyer (RWTH Aachen)