Mass Measurements with Missing Energy (A bit of spin measurement also)

Kiwoon Choi (KAIST)

CERN TH Institute LHC2FC, Feb. 12 (2009)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ① 할 → ① 익C*

1 Motivation

2 Mass Measurements with Missing Energy

- Endpoint Method
- Mass Relation Method
- M_{T2} -Kink Method
- ³ A New Collider Variable for Spin Measurement

K ロ K K (日 K K B K X B K X B K K K K G K C K

- MAOS Momentum
- **4** Conclusion

Mission of the LHC: Search for new physics beyond the SM

Motivations for New Physics at the TeV Scale:

• Hierarchy Problem

 $\delta m_H^2 \sim \frac{g^2}{8\pi^2} \Lambda_{\rm SM}^2 \sim M_Z^2 \quad \Longrightarrow \quad \Lambda_{\rm SM} \sim 1 \text{ TeV}$

• Dark Matter

Thermal WIMP with $\Omega_{DM} h^2 \sim \frac{0.1}{e^4}$ $\frac{0.1}{g^4} \left(\frac{m_{\rm DM}}{1~{\rm TeV}}\right)^2 \, \sim \, 0.1$ \implies *m*_{DM} ~ 1 TeV

New physics models solving the hierarchy problem while giving a DM candidate typically involve a Z_2 symmetry under which the predicted new particles are odd, while the SM particles are even:

SUSY with *R*-parity, Little Higgs with *T*-parity, UED with *KK*-parity, ...

*Z*₂ Symmetry \Rightarrow Lightest *Z*₂-odd particle χ is (quasi)stable, so it is a good candidate for a WIMP-like DM.

• LHC Signal: Multi-Jet (possibly with isolated leptons) Events with Large Missing Transverse Momentum p_T

Pair-produced new particle (*Y*) eventually decaying into visible SM particles (V) plus an invisible WIMP (χ) :

$$
pp \rightarrow Y + \bar{Y} \rightarrow \sum V(p_i) + \chi(k) + \sum V(q_j) + \chi(l)
$$

 $(U \equiv U$ pstream momentum = Momenta carried by the SM particles not from the decay of $Y + \overline{Y}$.) イロト イ押 トイヨ トイヨ トー

 2990

Mass measurement of those new particles is quite non-trivial:

(i) initial parton momenta in the beam-direction are unknown, (ii) each event involves two missing WIMPs.

Methods of mass measurement with missing energy

- Endpoint Method
- Mass Relation Method
- *M_{T2}*-Kink Method

May determine the new particle masses with $\mathcal{O}(\text{few})$ % accuracy at the high luminosity phase of LHC if the new physics events can be identified with a rather good measurement of the visible momenta and p_T .

KID KA KERKER E 1990

Other possibilities:

- Some Variants or Hybrids
- Production Cross Section: Too much model-dependent
- *M*eff , *MTGen*: Just a crude estimate

Basic Idea of Mass Measurement Method

Endpoint Method

Hinchliffe, Paige, Shapiro, Soderqvist, Yao; Bachacou, Hinchliffe, Paige; Allanach, Lester, Parker, Webber; Gjelsten, Miller, Osland; ...

Endpoint value of the invariant mass distribution of visible (SM) decay products depend on the new particle masses.

n-step cascade decay:

K ロ K K (日 K K B K X B K X B K K K K G K C K

Number of measurable invariant mass distributions: $2^n - (n + 1)$ Number of unknown new particle masses: $n + 1$.

 \implies For $n \geq 3$, there can be enough number of independent endpoint values to determine all masses of the produced new particles.

Squark cascade decay when $m_{\tilde{q}} > m_{\chi_2} > m_{\tilde{\ell}} > m_{\chi_1}$:

 $\begin{pmatrix} 2 & k_0 & k_1 \\ k_2 & \tilde{k} & k_1 \end{pmatrix}$ $\widetilde{\mathcal{F}}$

$$
m_{\ell\ell}^{\max} = m_{\chi_2} \sqrt{(1 - m_{\tilde{\ell}}^2/m_{\chi_2}^2)(1 - m_{\chi_1}^2/m_{\tilde{\ell}}^2)}
$$

\n
$$
m_{q\ell\ell}^{\max} = m_{\tilde{q}} \sqrt{(1 - m_{\chi_2}^2/m_{\tilde{q}}^2)(1 - m_{\chi_1}^2/m_{\chi_2}^2)}
$$

\n
$$
m_{q\ell(\text{high})}^{\max} = m_{\tilde{q}} \sqrt{(1 - m_{\tilde{\chi}_2}^2/m_{\tilde{q}}^2)(1 - m_{\chi_1}^2/m_{\tilde{\ell}}^2)}
$$

\n
$$
m_{q\ell(\text{low})}^{\max} = m_{\tilde{q}} \sqrt{(1 - m_{\chi_2}^2/m_{\tilde{q}}^2)(1 - m_{\tilde{\ell}}^2/m_{\chi_2}^2)}
$$

\n
$$
(m_{q\ell(\text{high})} \equiv \max(m_{q\ell_n}, m_{q\ell_f}), m_{q\ell(\text{low})} \equiv \min(m_{q\ell_n}, m_{q\ell_f}))
$$

Other relations are possible.

Real life is not so simple!

We have to deal with

- Combinatorics to identify the location of each particle in the event
- Energy-momentum resolution of detector
- Backgrounds
- ...

Result for SUSY SPS1a Point: Weiglein et. al. hep-ph/0410364

Input masses: $(m_{\tilde{q}}, m_{\chi_2}, m_{\tilde{\ell}}, m_{\chi_1}) = (540, 177, 143, 96) \text{ GeV}$ Fitted masses: $(543 \pm 13, 180 \pm 9, 146 \pm 11, 98 \pm 9)$ $(543 \pm 13, 180 \pm 9, 146 \pm 11, 98 \pm 9)$ $(543 \pm 13, 180 \pm 9, 146 \pm 11, 98 \pm 9)$ $(543 \pm 13, 180 \pm 9, 146 \pm 11, 98 \pm 9)$ $(\int \mathcal{L} = 100 \text{ fb}^{-1})$ 2990

• Mass Relation Method

Nojiri, Polesello, Tovey; Kawagoe, Nojiri, Polesello; Cheng, Engelhardt, Gunion, Han, McElrath; ...

Reconstruct the missing momentum with on-shell constraints.

n-step cascade decay:

Number of on-shell constraints for *N*-events: $(n + 1)N$

$$
k^2 = m_{\chi}^2
$$
, $(k+p_n)^2 = m_{I_{n-1}}^2$, ... $(k+p_1 + ... + p_n)^2 = m_Y^2$

Number of unknowns: $4N + (n + 1)$

(*N*-missing momenta and $(n + 1)$ -unknown masses)

 \implies For $n > 4$, on-shell mass relations provide more constraints than those necessary for reconstructing the missing momenta, and thus can give non-trivial constraints on the new particle [m](#page-9-0)a[ss](#page-11-0)[e](#page-9-0)[s.](#page-10-0)

Symmetric cascade decays with on-shell and \mathbf{p}_T constraints:

Number of constraints for *N*-events: $[2(n+1)+2]N$ (mass relations $+ \vec{p}_T$ constraints) Number of unknowns: $8N + (n + 1)$ (2*N*-missing momenta $+(n + 1)$ -unknown masses)

 \implies For $n \geq 3$, on-shell mass relations and p_T constraints provide more constraints than those necessary for reconstructing the missing momenta.

For $n = 3$, all the four new particle masses might be determine by combining the constraints from two events.

Cheng, Engelhardt, Gunion, Han, McElrath

KOD KAR KED KED E LOQO

- 16 unknowns: k^{μ} , l^{μ} , $k^{\prime \mu}$, $l^{\prime \mu}$
- 12 mass-shell constraints: $k^2 = l^2 = k'^2 = l'^2$, $(k+p_3)^2 = (l+q_3)^2 = (k'+p'_3)^2 = (l'+q'_3)^2,$ $(k+p_2+p_3)^2 = (l+q_2+q_3)^2 = (k'+p'_2+p'_3)^2 = (l'+q'_2+q'_3)^2,$ $(k+p_1+p_2+p_3)^2 = (l+q_1+q_2+q_3)^2 = (k'+p'_1+p'_2+p'_3)^2$ $=$ $(l' + q'_1 + q'_2 + q'_3)^2$,
- 4 \mathbf{p}_T -constraints: $\mathbf{k}_T + \mathbf{l}_T = \mathbf{p}_T$, $\mathbf{k}'_T + \mathbf{l}'_T = \mathbf{p}'_T$

8 complex solutions for each event-pair, of which more than one can be real, and many wrong solutions from wrong combinatorics.

Correct masses have better chance to give a real solution.

Number of mass solutions for multi-event-pairs, including the errors in real detector simulation and employing the cut reducing wrong combinatorics: Cheng, Engelhardt, Gunion, Han, McElrath

Input masses: $(m_{\tilde{q}}, m_{\chi_2}, m_{\tilde{\ell}}, m_{\chi_1}) = (568, 180, 143, 97) \text{ GeV}$ Fitted masses: $(562 \pm 4, 179 \pm 3, 139 \pm 3, 94 \pm 3)$ $(\int \mathcal{L} = 300 \text{ fb}^{-1})$ **KORKA SERKER ORA**

*M^T*2-Kink Method

Cho, Choi, Kim, Park; Gripaios; Barr, Gripaios, Lester; Nojiri, Sakurai, Shimizu, Takeuchi; Barr, Ross, Serna; Burns, Kong, Matchev, Park; ...

Previous methods require a long cascade decay $(n \geq 3)$ to determine the full new particle spectrum.

However, there are many well-motivated new physics models which do not give a long cascade decay: SUSY with $m_{\text{sfermion}} \gg m_{\text{gaugino}}$ (Focus point scenario, String moduli-mediation, Loop-split SUSY, ...)

$$
\begin{array}{c|c}\n\end{array}\n\begin{array}{c|c}\n\end{array}\n\begin{array}{c}\n\end{array}
$$

- Mass relation method simply can not be applied.
- Endpoint methods can determine only the gaugino mass differences.
- M_{T2} -kink method can determine the full gaugino mass spectrum.

• Transverse mass of decay products for $Y \to V(p) + \chi(k)$:

$$
M_T^2 = m_V^2 + m_\chi^2 + 2\sqrt{m_V^2 + |\mathbf{p}_T|^2}\sqrt{m_\chi^2 + |\mathbf{k}_T|^2} - 2\mathbf{p}_T \cdot \mathbf{k}_T
$$

An analogue of the invariant mass $M^2 = (p + k)^2$, but independent of the momentum components in the beam-direction.

One may use an arbitrary trial WIMP mass m_x to define M_T : (True WIMP mass $= m_{\chi}^{\text{true}}$)

$$
M_T(m_\chi=m_\chi^{\rm true})\,\leq\,m_T^{\rm true}
$$

If m_{χ}^{true} is known, and \mathbf{k}_T can be read off from p_T , m_{Y}^{true} can be determined without knowing k_L by the endpoint of the transverse mass distribution. (Example: $W \rightarrow \ell(p) + \nu(k)$.)

M_{T2} is a generalization of M_T applied to generic new physics event with two missing particles: Lester and Summers

$$
p + p \rightarrow Y + \overline{Y} \rightarrow V_1(p) + \chi(k) + V_2(q) + \chi(l)
$$

$$
M_{T2}(\text{event}; m_\chi) \qquad \left(\{\text{event}\} = \{m_{V_1}, \mathbf{p}_T, m_{V_2}, \mathbf{q}_T, \mathbf{p}_T \} \right)
$$

=
$$
\min_{\mathbf{k}_T + \mathbf{l}_T = \mathbf{p}_T} \left[\max \left(M_T(\mathbf{p}_T, m_{V_1}, \mathbf{k}_T, m_\chi), M_T(\mathbf{q}_T, m_{V_2}, \mathbf{l}_T, m_\chi) \right) \right]
$$

KORKARYKERKE POLO

- For each event, M_{T2} (event; m_{χ}) is an increasing function of m_{χ} .
- M_{T2} (event; $m_\chi = m_\chi^{\text{true}}$) $\leq m_Y^{\text{true}}$ for all events.

 M_{T2} -Kink: If the event set has an enough variety,

$$
M_{T2}^{\max}(m_{\chi}) = \max_{\{\text{all events}\}} \left[M_{T2}(\text{event}; m_{\chi}) \right]
$$

has a kink-structure at $m_{\chi} = m_{\chi}^{\text{true}}$ with $M_{T2}^{\text{max}}(m_{\chi} = m_{\chi}^{\text{true}}) = m_{Y}^{\text{true}}$.

 χ

Events 1, 2, 3, 4

What kind of variety ?

- The visible decay products of $Y \to V + \chi$ can have significantly different invariant masses: Cho, Choi, Kim, Park *V* is a multi-particle state.
- \bullet The event can have a large upstream transverse momentum U_T : Gripaios; Barr, Gripaios, Lester

Y is produced from the decay of heavier particle.

For cascade decays, M_{T2} -kink method can be applied to generic sub-event:

KORKARYKERKE POLO

Gluino M_{T2} -Kink in heavy sfermion scenario:

Cho, Choi, Kim, Park

Input masses: $(m_{\tilde{g}}, m_{\chi_1}) = (780 \,\text{GeV}, 98 \,\text{GeV})$ (Wino-like χ_1) Fitted masses: $(776 \pm \text{few}, 97 \pm \text{few})$ $(\int \mathcal{L} = 300 \text{ fb}^{-1})$

First Application of *M^T*² to Real Data CDF (Feb. 2009)

Using Only M_{T2} for the CDF Dilepton $t\bar{t}$ Data (3 fb^{-1})

$$
m_t = 167.9^{+4.8}_{-4.1} \text{(stat)} \pm 2.9 \text{(sys)} \text{ GeV}
$$

KORKARYKERKE POLO

New Collider Variable for Spin Measurement

*M^T*2-Assisted-On-Shell (MAOS) Reconstruction of WIMP Momentum: Cho, Choi, Kim, Park, arXiv:0810.4853 [hep-ph]

The main difficulty of spin measurement arises from that the WIMP momenta k^{μ} and l^{μ} can not be reconstructed event-by-event.

If $m_\chi^{\rm true}$ and $m_Y^{\rm true}$ are known, correct WIMP momenta can be reconstructed for the M_{T2} -endpoint events:

$$
M_{T2}(\text{event}, m_X^{\text{true}}) = m_Y^{\text{true}}, \quad \mathbf{k}_T + \mathbf{l}_T = \mathbf{p}_T,
$$
\n
$$
k^2 = l^2 = (m_X^{\text{true}})^2, \ (k+p)^2 = (l+q)^2 = (m_Y^{\text{true}})^2,
$$
\n
$$
\implies \quad \mathbf{k}^\mu = \mathbf{k}_{\text{true}}^\mu, \quad \mathbf{l}^\mu = \mathbf{l}_{\text{true}}^\mu
$$

Even for generic new physics events, and even when $m_\chi^{\rm true}$ and $m_{Y}^{\rm true}$ are unknown, one can do a similar reconstruction of WIMP momenta.

Introduce trial WIMP and mother particle masses, (m_x, m_Y) , and impose the constraints:

$$
k^{2} = l^{2} = m_{\chi}^{2}, \quad (k+p)^{2} = (l+q)^{2} = m_{Y}^{2}, \quad \mathbf{k}_{T} + \mathbf{l}_{T} = \mathbf{p}_{T},
$$

$$
M_{T2}(p,q,\mathbf{p},m_{\chi}) = M_{T}(p,\mathbf{k}_{T},m_{\chi}) = M_{T}(q,\mathbf{l}_{T},m_{\chi})
$$

$$
\implies k^{\mu} = k_{\text{mass}}^{\mu(\pm)}(p, q, \mathbf{p}_{T}, m_{\chi}, m_{Y}), \quad l^{\mu} = l_{\text{mass}}^{\mu(\pm)}(p, q, \mathbf{p}_{T}, m_{\chi}, m_{Y})
$$

- If m_{χ}^{true} and m_{Y}^{true} are known, use $m_{\chi} = m_{\chi}^{\text{true}}$ and $m_{Y} = m_{Y}^{\text{true}}$.
- Unless, one can simply use $m_{\chi} = 0$ and $m_{\chi} = M_{T2}^{\text{max}}(m_{\chi} = 0)$.

 \Rightarrow Event by event, MAOS momentum of each WIMP is determined (with two-fold ambiguity) in terms of the visible momenta and $p\llap/_T$.

A O A G A 4 D A D A D A G A G A 4 O A CA

For the purpose of spin measurement, MAOS momenta provide a good approximation for the unmeasurable true WIMP momenta.

Example: 3-body decay of gluino pair for mSUGRA SPS2 point

$$
\tilde{g}\tilde{g} \rightarrow q\bar{q}\chi_1 q\bar{q}\chi_1 \quad (m_{\tilde{g}} = 780 \,\text{GeV}, \ m_{\chi_1} = 122 \,\text{GeV})
$$

• Distribution of $\mathbf{k}_{\text{maos}} - \mathbf{k}_{\text{true}}$ for $m_{\chi} = 0$ and $m_{\chi} = M_{T2}^{\text{max}}(0)$.

 2990

Invariant mass distributions:

Without k_{mass}^{μ} , one may consider **the s-distribution** to distinguish SUSY from UED: Csaki, Heinonen, Perelstein

Summary

• There are several methods to determine new particle masses from missing energy events, (i) endpoint method, (ii) mass-relation method, (iii) M_{T2} -kink method, and also their variants or hybrids.

These methods may determine new particle masses with $\mathcal{O}(\text{few})$ % accuracy at the high luminosity phase $(\int \mathcal{L}_{LHC} \sim 100 \text{ fb}^{-1})$, while the efficiency of each method differs from case by case.

• A new collider variable, the MAOS momentum, has been introduced, which approximates the true WIMP momentum quite well, so can provide a powerful tool for spin measurement.