WG1 Discussion on C: Non-SM-like Higgs C': Also find something else

Shrihari Gopalakrishna

Brookhaven National Lab

LHC2FC Workshop, CERN

18th February 2009

Shrihari Gopalakrishna WG1 Discussion on C: Non-SM-like Higgs C': Also find somethin

- Non-SM-like Higgs without anything new
 - Example: $U(1)_X$ hidden sector
- Non-SM-like Higgs with new particles
 - Example: MSSM, ...

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Non-SM-like Higgs

- Non-SM-like Higgs without anything new
 - Example: $U(1)_X$ hidden sector
- Non-SM-like Higgs with new particles
 - Example: MSSM, ...
- Altered SM production and decay channels

•
$$gg
ightarrow h
ightarrow b ar{b}$$
 , $gg
ightarrow h
ightarrow W^+ W^-$

- New particles decaying to Higgs
 - h in SUSY cascade decays
- Higgs decaying to new particles
 - $h \rightarrow$ hidden sector

$U(1)_X$ hidden sector via the Higgs

[SG, Seung Lee, James Wells, Ongoing]

 $\mathsf{SM} \times U(1)_X \ U(1)_X$ sector : $\mathsf{GaugeBoson}(X_\mu), \mathsf{Scalar}(\Phi_H), \mathsf{Fermion}(\psi)$

 $\begin{array}{l} \mathsf{SM} \leftrightarrow \ \mathcal{U}(1)_X \ \text{communication} \\ \mathcal{L} \supset -\alpha \ |\Phi_{\mathcal{SM}}|^2 |\Phi_H|^2 + \frac{\chi}{2} \ X_{\mu\nu} B^{\mu\nu} \\ \text{Here focus on Higgs Mixing route} \end{array}$

$$\begin{array}{l} \mathcal{V} \text{ is such that} \\ SU(2)_L \times U(1)_Y \text{ breaking }: \langle \phi_{SM} \rangle = v \\ U(1)_X \text{ breaking }: \langle \phi_H \rangle = \xi \\ \text{Causes } \phi_H \leftrightarrow \phi_{SM} \text{ mixing (masses: } m_h, m_H) \\ \begin{pmatrix} \phi_{SM} \\ \phi_H \end{pmatrix} = \begin{pmatrix} c_h & s_h \\ -s_h & c_h \end{pmatrix} \begin{pmatrix} h \\ H \end{pmatrix}$$

Vector-like or chiral fermions. After $U(1)_X$ breaking, with ϕ_H real d.o.f :

$$\mathcal{L} \supset \overline{\psi} i \gamma^{\mu} \mathcal{D}_{\mu} \psi + \kappa \, \phi_{H} \overline{\psi} \psi + \mathcal{M}_{\psi} \overline{\psi} \psi$$

Accidental Z₂ symmetry : $\psi \rightarrow -\psi$, $SM \rightarrow SM$, $\phi_H \rightarrow \phi_H$

- So ψ cosmologically stable \implies Dark Matter
- ψ Vector-like or Chiral. Dirac or Majorana

Parameters :

 $M_{\psi}, \kappa, s_h, m_h, m_H$

• • B • • B • B

Self-annihilation and Dark Matter

• Self-annihilation & Relic density

 $\psi\psi
ightarrow bar{b}, W^+W^-, ZZ, hh, tar{t}$

Obtain analytical thermally averaged c.s. and relic density

Self-annihilation and Dark Matter

• Self-annihilation & Relic density

 $\psi\psi
ightarrow bar{b}, W^+W^-, ZZ, hh, tar{t}$

Obtain analytical thermally averaged c.s. and relic density

• Direct detection:

 $M_{\psi} = 200 \, GeV, m_h = 120 \, GeV, \kappa_{11} = 2.0, s_h = 0.25, \kappa_{3\phi} = 1, m_H = 1 \, TeV$

Contours of $\Omega_{dm0} = 0.1, 0.2, 0.3$ (dotted, thick-dash, solid) Shaded $\sigma_{Dir} \gtrsim 10^{-43} \text{ cm}^2$ (dark-gray) $\gtrsim 10^{-44} \text{ cm}^2$ (med-gray) $\gtrsim 10^{-45} \text{ cm}^2$ (light-gray)

()

Higgs Invisible Decay

If $m_h > 2M_{\psi}$: $h \rightarrow \psi \overline{\psi}$ Invisible Decay!

 $h \rightarrow \psi \bar{\psi} , \ b \bar{b} , \ WW , \ ZZ , \ t \bar{t}$

Scan with $\Omega_{\textit{dm}}\,,\,\sigma_{\textit{DirDet}}$ enforced $^{\rm SM \ channels \ suppressed}$

$h \rightarrow INV$ LHC Signature (qqh - WBF)

[O. J. P. Eboli and D. Zeppenfeld, 2000]

$$p_T' > 40 , \ |\eta_j| < 5.0 , \ |\eta_{j_1} - \eta_{j_2}| > 4.4 , \ \eta_{j_1} \cdot \eta_{j_2} < 0 ,$$

 $p_T > 100 \text{ GeV} , \ M_{jj} > 1200 \text{ GeV} , \ \phi_{jj} < 1 .$

For
$$s_h = 0.25$$
 , $BR_{INV} = 0.25$:

m_h (GeV)	$\sigma_{S}BR_{inv}(fb)$	$\sigma_B(fb)$	$\mathcal{L}_{5\sigma}$ (fb ⁻¹)
120	22.7	167	8
200	18	167	12.8
300	13.2	167	23.7

[H. Davoudiasl, T. Han and H. E. Logan, 2004]

$$p_{T\,\ell} > 10 \ , \ |\eta_\ell| < 2.5 \ , \ p_T > 100 \ {
m GeV} \ , \ |M_{\ell^+\ell^-} - m_Z| < 10 \ {
m GeV} \ .$$

For
$$s_h = 0.25$$
 , $BR_{INV} = 0.25$:

m_h (GeV)	$\sigma_{S}BR_{inv}(fb)$	$\sigma_B(fb)$	$\mathcal{L}_{5\sigma}$ (fb ⁻¹)
120	2.1	26.3	146
200	0.8	26.3	1059
300	0.26	26.3	_

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

э

2HDM and MSSM

• Altered $ht\bar{t}$ and $hb\bar{b}$ couplings can change $\sigma(gg \rightarrow h)$

•
$$y_b \sim rac{m_b}{v} \sqrt{1 + tan^2 eta} (-s_lpha)$$
 $y_t \sim rac{m_t}{v} rac{\sqrt{1 + tan^2 eta}}{taneta} c_lpha$

Altered hWW and hZZ couplings

•
$$C_{hWW} \sim g^2 v rac{(taneta c_{lpha} - s_{lpha})}{\sqrt{1 + tan^2eta}}$$

- How well can the LHC determine these couplings
 - Given these error bars, are there regions of MSSM parameter space can lead to larger deviations?
- $BR(h
 ightarrow bar{b})\,,\,BR(h
 ightarrow bar{b})$ also should be taken into account
 - How well is $(\sigma * BR)(gg \rightarrow h \rightarrow XX)$ known?

伺 とう きょう とう うう

Additional scalar doublets Adding singlets that mix with the Higgs doublet Couple to Higgs triplet

回 とくほとくほとう

э