MSTW2008: Parton Distributions for the LHC

James Stirling
Cambridge University

(with Alan Martin, Robert Thorne, Graeme Watt)

deep inelastic scattering and parton distributions

deep inelastic scattering

variables

$$Q^{2} = -q^{2}$$

$$x = Q^{2}/2p \cdot q \quad \text{(Bjorken x)}$$

$$(y - Q^{2}/x \text{ s})$$

resolution

$$\lambda = \frac{h}{Q} = \frac{2 \times 10^{-16} \,\mathrm{m GeV}}{Q}$$

at HERA, $Q^2 < 10^5 GeV^2$ $\Rightarrow \lambda > 10^{-18} \text{ m} = r_p/1000$

inelasticity

$$x = \frac{Q^2}{Q^2 + M_X^2 - M_p^2}$$

$$\Rightarrow 0 < x \le 1$$

•in general, we can write

$$\frac{d\sigma}{dx \ dQ^2} = \frac{4\pi\alpha^2}{Q^4} \left[y^2 F_1 + 2(1-y)x^{-1} F_2 \right]$$

where the $F_i(x, Q^2)$ are called structure functions

the parton model (Feynman 1969)

 photon scatters incoherently off massless, pointlike, spin-1/2 quarks infinite momentum frame

• probability that a quark carries fraction ξ of parent proton's momentum is $q(\xi)$, $(0 < \xi < 1)$

$$F_2(x) = \sum_{q,\bar{q}} \int_0^1 d\xi \ e_q^2 \, \xi \, q(\xi) \, \delta(x - \xi) = \sum_{q,\bar{q}} e_q^2 \, x \, q(x)$$
$$= \frac{4}{9} \, x \, u(x) + \frac{1}{9} \, x \, d(x) + \frac{1}{9} \, x \, s(x) + \dots$$

 the functions u(x), d(x), s(x), ... are called parton distribution functions (pdfs) - they encode information about the proton's deep structure

extracting pdfs from experiment

- different beams (e,μ,ν,...) & targets (H,D,Fe,...) measure different combinations of quark pdfs
- thus the individual q(x) can be extracted from a set of structure function measurements
- gluon not measured directly, but carries about 1/2 the proton's momentum

$$F_{2}^{ep} = \frac{4}{9}(u+\overline{u}) + \frac{1}{9}(d+\overline{d}) + \frac{1}{9}(s+\overline{s}) + \dots$$

$$F_{2}^{en} = \frac{1}{9}(u+\overline{u}) + \frac{4}{9}(d+\overline{d}) + \frac{1}{9}(s+\overline{s}) + \dots$$

$$F_{2}^{vp} = 2[d+s+\overline{u}+\dots]$$

$$F_{2}^{vn} = 2[u+\overline{d}+\overline{s}+\dots]$$

$$s = \bar{s} = \frac{5}{6}F_2^{\nu N} - 3F_2^{eN}$$

$$\sum_{q} \int_{0}^{1} dx \, x \left(q(x) + \overline{q}(x) \right) = 0.55$$

the data have errors, and therefore so do the pdfs.....

40 years of Deep Inelastic Scattering

scaling violations and QCD

The structure function data exhibit systematic violations

of Bjorken scaling:

scaling violations measured at HERA

beyond lowest order in pQCD

going to higher orders in pQCD is straightforward in principle, since the above structure for F_2 and for DGLAP generalises in a straightforward way:

DGLAP:

$$\begin{array}{cccc} & \overline{\frac{\partial \mathbf{q_i}(\mathbf{x}, \mathbf{Q}^2)}{\partial \log \mathbf{Q}^2}} & = & \frac{\alpha_\mathbf{S}}{2\pi} \int_{\mathbf{x}}^1 \frac{d\mathbf{y}}{\mathbf{y}} \Big\{ \mathbf{P_{q_i q_j}}(\mathbf{y}, \alpha_\mathbf{S}) \ \mathbf{q_j}(\frac{\mathbf{x}}{\mathbf{y}}, \mathbf{Q}^2) \\ & & + \mathbf{P_{q_i g}}(\mathbf{y}, \alpha_\mathbf{S}) \ \mathbf{g}(\frac{\mathbf{x}}{\mathbf{y}}, \mathbf{Q}^2) \Big\} \\ & \frac{\partial \mathbf{g}(\mathbf{x}, \mathbf{Q}^2)}{\partial \log \mathbf{Q}^2} & = & \frac{\alpha_\mathbf{S}}{2\pi} \int_{\mathbf{x}}^1 \frac{d\mathbf{y}}{\mathbf{y}} \Big\{ \mathbf{P_{g q_j}}(\mathbf{y}, \alpha_\mathbf{S}) \ \mathbf{q_j}(\frac{\mathbf{x}}{\mathbf{y}}, \mathbf{Q}^2) \\ & & + \mathbf{P_{g g}}(\mathbf{y}, \alpha_\mathbf{S}) \ \mathbf{g}(\frac{\mathbf{x}}{\mathbf{y}}, \mathbf{Q}^2) \Big\} \end{array}$$

$$P(x, \alpha_S) = P^{(0)} + \alpha_S P^{(1)}(x) + \alpha_S^2 P^{(2)}(x) + ...$$

The 2004 calculation of the complete set of P⁽²⁾ splitting functions by Moch, Vermaseren and Vogt completes the calculational tools for a consistent NNLO (massless) pQCD treatment of Tevatron & LHC hard-scattering cross sections

summary: how pdfs are obtained

- choose a factorisation scheme (e.g. MSbar), an order in perturbation theory (see below, e.g. LO, NLO, NNLO) and a 'starting scale' Q₀ where pQCD applies (e.g. 1-2 GeV)
- parametrise the quark and gluon distributions at Q_0 , e.g.

$$f_i(x, Q_0^2) = A_i x^{a_i} [1 + b_i \sqrt{x} + c_i x] (1 - x)^{d_i}$$

- solve DGLAP equations to obtain the pdfs at any x and scale $Q > Q_0$; fit data for parameters $\{A_i, a_i, ..., \alpha_S\}$
- approximate the exact solutions (e.g. interpolation grids, expansions in polynomials etc) for ease of use; thus the output 'global fits' are available 'off the shelf', e.g.

```
SUBROUTINE PDF(X,Q,U,UBAR,D,DBAR,...,BBAR,GLU)

input | output
```

2

MSTW*

*Alan Martin, WJS, Robert Thorne, Graeme Watt

arXiv:0901.0002 [hep-ph])

the MRS/MRST/MSTW project

MSTW 2008 update

MSTW 2008 NLO PDFs (68% C.L.)

new data (see next slide)

new theory/infrastructure

- $-\delta f_i$ from new dynamic tolerance method: 68%cl (1 σ) and 90%cl (*cf.* MRST) sets available
- new definition of α_S (no more Λ_{OCD})
- new GM-VFNS for c, b (see Martin et al., arXiv:0706.0459)
- new fitting codes: FEWZ, VRAP, fastNLO
- new grids: denser, broader coverage
- slightly extended parameterisation at Q_0^2 :34-4=30 free parameters including α_s

code, text and figures available at: http://projects.hepforge.org/mstwpdf/ and in latest version 5.7.0 LHAPDF: http://projects.hepforge.org/lhapdf/

data sets used in fit

	• •
Data set	$N_{ m pts.}$
H1 MB 99 e ⁺ p NC	8
H1 MB 97 $e^+ p$ NC	64
H1 low Q^2 96–97 $e^+ p$ NC	80
H1 high Q^2 98–99 e^-p NC	126
H1 high Q^2 99–00 e^+p NC	147
ZEUS SVX 95 e^+p NC	30
ZEUS 96–97 e^+p NC	144
ZEUS 98-99 e ⁻ p NC	92
ZEUS 99–00 e^+p NC	90
H1 99–00 e ⁺ p CC	28
ZEUS 99–00 e^+p CC	30
$H1/ZEUS e^{\pm}p F_2^{charm}$	83
H1 99–00 e^+p incl. jets	24
ZEUS 96–97 e^+p incl. jets	30
ZEUS 98–00 $e^{\pm}p$ incl. jets	30
DØ II pp̄ incl. jets	110
CDF II pp̄ incl. jets	76
CDF II $W o l u$ asym.	22
DØ II $W \rightarrow l \nu$ asym.	10
DØ II Z rap.	28
CDF II Z rap.	29

Data set	$N_{ m pts.}$
BCDMS $\mu p F_2$	163
BCDMS μd F_2	151
NMC $\mu p F_2$	123
NMC $\mu d F_2$	123
NMC $\mu n/\mu p$	148
E665 $\mu p F_2$	53
E665 $\mu d F_2$	53
SLAC ep F ₂	37
SLAC ed F ₂	38
$NMC/BCDMS/SLAC F_L$	31
E866/NuSea pp DY	184
E866/NuSea pd/pp DY	15
NuTeV $\nu N F_2$	53
CHORUS $\nu N F_2$	42
NuTeV ν N x F $_3$	45
CHORUS $\nu N \times F_3$	33
CCFR $\nu N \rightarrow \mu \mu X$	86
NuTeV $\nu N ightarrow \mu \mu X$	84
All data sets	2743

Red = New w.r.t. MRST 2006 fit.

MSTW input parametrisation

At input scale $Q_0^2 = 1 \text{ GeV}^2$: $xu_{y} = A_{u} x^{\eta_{1}} (1-x)^{\eta_{2}} (1+\epsilon_{u} \sqrt{x} + \gamma_{u} x)$ $xd_{v} = A_{d} x^{\eta_{3}} (1-x)^{\eta_{4}} (1+\epsilon_{d} \sqrt{x} + \gamma_{d} x)$ $xS = A_S x^{\delta_S} (1-x)^{\eta_S} (1+\epsilon_S \sqrt{x} + \gamma_S x)$ $x\bar{d} - x\bar{u} = A_{\Lambda} x^{\eta_{\Delta}} (1-x)^{\eta_{S}+2} (1+\gamma_{\Lambda} x + \delta_{\Lambda} x^{2})$ $xg = A_{\sigma} x^{\delta_{\mathbf{g}}} (1-x)^{\eta_{\mathbf{g}}} (1+\epsilon_{\sigma} \sqrt{x} + \gamma_{\sigma} x) + A_{\sigma'} x^{\delta_{\mathbf{g'}}} (1-x)^{\eta_{\mathbf{g'}}}$ $xs + x\bar{s} = A_{+} x^{\delta_{S}} (1-x)^{\eta_{+}} (1+\epsilon_{S} \sqrt{x} + \gamma_{S} x)$ $xs - x\bar{s} = A_{-} x^{\delta_{-}} (1-x)^{\eta_{-}} (1-x/x_{0})$

Note: 20 parameters allowed to go free for eigenvector PDF sets, *cf.* 15 for MRST sets

which data sets determine which partons?

Process	Subprocess	Partons	x range
$\ell^{\pm}\left\{p,n\right\} \to \ell^{\pm}X$	$\gamma^* q o q$	$q, ar{q}, g$	$x \gtrsim 0.01$
$\ell^{\pm} n/p \to \ell^{\pm} X$	$\gamma^* d/u o d/u$	d/u	$x \gtrsim 0.01$
$pp \to \mu^+ \mu^- X$	$u ar{u}, d ar{d} ightarrow \gamma^*$	$ar{q}$	$0.015 \lesssim x \lesssim 0.35$
$pn/pp \rightarrow \mu^{+}\mu^{-}X$	$(u\bar{d})/(u\bar{u}) \to \gamma^*$	$ar{d}/ar{u}$	$0.015 \lesssim x \lesssim 0.35$
$\nu(\bar{\nu}) N \to \mu^-(\mu^+) X$	$W^*q o q'$	q,\bar{q}	$0.01 \lesssim x \lesssim 0.5$
$\nu N \to \mu^- \mu^+ X$	$W^*s \to c$	s	$0.01 \lesssim x \lesssim 0.2$
$\bar{\nu} N \to \mu^+ \mu^- X$	$W^*\bar{s} \to \bar{c}$	\bar{s}	$0.01 \lesssim x \lesssim 0.2$
$e^{\pm} p \to e^{\pm} X$	$\gamma^* q \to q$	$g,q,ar{q}$	$0.0001 \lesssim x \lesssim 0.1$
$e^+ p \to \bar{\nu} X$	$W^+\left\{d,s\right\} \to \left\{u,c\right\}$	d, s	$x \gtrsim 0.01$
$e^{\pm}p \to e^{\pm} c\bar{c} X$	$\gamma^*c \to c, \ \gamma^*g \to c\bar{c}$	c, g	$0.0001 \lesssim x \lesssim 0.01$
$e^{\pm}p \to \mathrm{jet} + X$	$\gamma^* g o q ar q$	g	$0.01 \lesssim x \lesssim 0.1$
$p\bar{p} \to \mathrm{jet} + X$	$gg, qg, qq \rightarrow 2j$	g,q	$0.01 \lesssim x \lesssim 0.5$
$p\bar{p} \to (W^{\pm} \to \ell^{\pm} \nu) X$	$ud \to W, \bar{u}\bar{d} \to W$	$u,d,ar{u},ar{d}$	$x \gtrsim 0.05$
$p\bar{p} \to (Z \to \ell^+\ell^-) X$	$uu, dd \rightarrow Z$	d	$x \gtrsim 0.05$

pdf uncertainties

$$\Delta\chi_{\mathrm{global}}^2 \equiv \chi_{\mathrm{global}}^2 - \chi_{\mathrm{min}}^2 = \sum_{i,j=1}^n H_{ij} (a_i - a_i^0) (a_j - a_j^0)$$

$$\vec{a} - \vec{a}^0 = \sum_{k=1,n} z_k \vec{e}_k \text{ where } (H^{-1}) \cdot \vec{e}_k = \lambda_k \vec{e}_k, \ \vec{e}_k \cdot \vec{e}_l = \lambda_k \delta_{kl}$$
 then
$$\Delta\chi_{\mathrm{global}}^2 = \sum_{k=1,n} z_k^2 \leq T^2 \quad (T = \mathrm{tolerance})$$

this defines a set of n 'error' pdfs, spanning the allowed variation in the parameters, as determined by T:

$$\vec{a}(S_k^{\pm}) = \vec{a}^0 \pm T\vec{e}_k$$

rather than using a fixed value of T (cf. MRST, CTEQ), we determine the 'dynamic' tolerance for each eigenvector from the condition that all data sets should be described within their 68% or 90% or ... confidence limit

MSTW 2008 NLO PDFs (68% C.L.)

MSTW2008(NLO) vs. CTEQ6.6

Note:

CTEQ error bands slightly larger 'by construction' (different definition of tolerance)

CTEQ light quarks and gluons slightly larger at small x because of imposition of positivity on gluon at Q_0^2

a note on α_{S}

world average value (PDG 2008):

$$\alpha_S^{\overline{MS},NNLO}(M_Z^2) = 0.1176 \pm 0.002$$

• MSTW global fit value (minimum χ^2):

$$\alpha_S^{\overline{MS},NNLO}(M_Z^2) = 0.1171$$

• the pdf error sets are generated with $\alpha_{\rm S}$ fixed at its 'best fit' value, therefore variation of (e.g. jets, top, etc at LHC) cross sections with $\alpha_{\rm S}$ is not explicitly included in the 'pdf error'

Note:
$$\alpha_S^{\overline{MS},NLO}(M_Z^2) = 0.1202$$

the asymmetric sea

 the sea presumably arises when 'primordial' valence quarks emit gluons which in turn split into quark-antiquark pairs, with suppressed splitting into heavier quark pairs

•so we naively expect

$$\overline{u} \approx \overline{d} > \overline{s} > \overline{c} > \dots$$

• but why such a big d-u asymmetry? Meson cloud, Pauli exclusion, ...?

strange

earliest pdf fits had SU(3) symmetry: $s(x,Q_0^2)=\bar{s}(x,Q_0^2)=\bar{u}(x,Q_0^2)=\bar{d}(x,Q_0^2)$

later relaxed to include (constant) strange suppression (cf. fragmentation):

$$s(x, Q_0^2) = \bar{s}(x, Q_0^2) = \frac{\kappa}{2} \left[\bar{u}(x, Q_0^2) + \bar{d}(x, Q_0^2) \right]$$

with $\kappa = 0.4 - 0.5$

nowadays, dimuon production in υN DIS (CCFR, NuTeV) allows 'direct' determination:

$$\frac{d\sigma}{dxdy} \left(\nu_{\mu}(\bar{\nu}_{\mu}) N \to \mu^{+}\mu^{-}X \right) = B_{c} \,\mathcal{N}\mathcal{A} \,\frac{d\sigma}{dxdy} \left(\nu_{\mu}s(\bar{\nu}_{\mu}\bar{s}) \to c\mu^{-}(\bar{c}\mu^{+})X \right)$$

in the range 0.01 < x < 0.4

data seem to prefer $s(x,Q_0^2) - \bar{s}(x,Q_0^2) \neq 0$

theoretical explanation?!

MSTW

charm, bottom

considered sufficiently massive to allow pQCD treatment: $g \to Q\overline{Q}$

distinguish two regimes:

- (i) $Q^2 \sim m_H^2$ include full m_H dependence to get correct threshold behaviour
- (ii) $Q^2 \gg m_H^2$ treat as ~massless partons to resum $\alpha_{\rm S}^{\rm n} {\rm log^n}({\rm Q^2/m_H^2})$ via DGLAP

FFNS: OK for (i) only **ZM-VFNS:** OK for (ii) only

consistent **GM**(=general mass)-**VFNS** now available (e.g. $ACOT(\chi)$, Roberts-Thorne) which interpolates smoothly between the two regimes

Note: definition of these is tricky and non-unique (ambiguity in assignment of $O(m_H^2//Q^2)$ contributions), and the implementation of improved treatment (e.g. in going from MRST2006 to MSTW 2008) can have a big effect on light partons

charm and bottom structure functions

impact of pdfs on precision phenomenology at LHC

the QCD factorization theorem for hard-scattering

(short-distance) inclusive processes

$$\begin{split} \sigma_X &= \sum_{\mathbf{a},\mathbf{b}} \int_0^1 d\mathbf{x}_1 d\mathbf{x}_2 \; \mathbf{f_a}(\mathbf{x}_1, \mu_F^2) \; \mathbf{f_b}(\mathbf{x}_2, \mu_F^2) \\ &\times \; \hat{\sigma}_{\mathbf{a}\mathbf{b} \to X} \left(\mathbf{x}_1, \mathbf{x}_2, \{\mathbf{p_i^{\mu}}\}; \alpha_S(\mu_R^2), \alpha(\mu_R^2), \frac{\mathbf{Q}^2}{\mu_R^2}, \frac{\mathbf{Q}^2}{\mu_F^2} \right) \end{split}$$

to some fixed order in pQCD, e.g. high-E_T jets

$$\hat{\sigma} = A\alpha_S^2 + B\alpha_s^3$$

• or 'improved' by some leading logarithm approximation (LL, NLL, ...) to all orders via resummation

LHC parton kinematics

Χ

pdfs at LHC – the issues

- high precision cross section predictions require accurate knowledge of pdfs: $\delta\sigma_{th} = \delta\sigma_{pdf} + ...$
 - → improved signal and background predictions
 - → easier to spot new physics
- 'standard candle' processes (e.g. σ_7) to
 - check formalism (factorisation, DGLAP, …)
 - measure machine luminosity?
- learning more about pdfs from LHC measurements. e.g.
 - high-E_T jets → gluon?
 - W⁺,W⁻,Z⁰ \rightarrow quarks?
 - forward Drell-Yan \rightarrow small x?
 - **—** ...

how important is pdf precision?

• Example 1: σ(M_H=120 GeV) @ LHC

$$\delta\sigma_{pdf} \approx \pm 2\%, \quad \delta\sigma_{ptNNL0} \approx \pm \ 10\%$$

$$\delta\sigma_{ptNNLL} \approx \pm \ 8\%$$

$$\rightarrow \qquad \delta\sigma_{theory} \approx \pm \ 10\%$$

• Example 2: σ(Z⁰) @ LHC

$$\begin{array}{lll} \delta\sigma_{\text{pdf}} \approx \pm 2\%, & \delta\sigma_{\text{ptNNL0}} \approx \pm \ 2\% \\ \rightarrow & \delta\sigma_{\text{theory}} \approx \pm \ 3\% \end{array}$$

• Example 3:
$$\sigma(tt)$$
 @ LHC 1000 $\delta\sigma_{pp} \rightarrow t\bar{t}$ [pb] at LHC $\delta\sigma_{pdf} \approx \pm 2\%$, $\delta\sigma_{ptNNL0approx} \approx \pm 3\%$ 800 $\delta\sigma_{theory} \approx \pm 4\%$ NNLO_(approx) Moch, Uwer $\sigma_{pp} \rightarrow t\bar{t}$ [pb] at LHC $\sigma_{pp} \rightarrow t\bar{t}$ [pb] at LHC

 Example 4: quantitative limits on New Physics depend on pdfs

sensitivity of dijet cross section at LHC to large extra dimensions

- LED accelerate the running of α_S as the compactification scale M_c is approached
- sensitivity attentuated by pdf uncertainties in SM prediction

Ferrag (ATLAS), hep-ph/0407303

parton luminosity functions

 a quick and easy way to assess the mass and collider energy dependence of production cross sections

- i.e. all the mass and energy dependence is contained in the X-independent parton luminosity function in []
- useful combinations are $ab = gg, \sum_q q\bar{q}, \dots$
- and also useful for assessing the uncertainty on cross sections due to uncertainties in the pdfs

Huston, Campbell, S (2007)

parton luminosity uncertainties at LHC

LHC at 10 TeV

pdf uncertainty on $\sigma(gg \rightarrow H)$

impact of Tevatron jet data on fits

- a distinguishing feature of pdf sets is whether they use (MRST/MSTW, CTEQ,...) or do not use (H1, ZEUS, Alekhin, NNPDF,...) Tevatron jet data in the fit: the impact is on the high-x gluon
 (Note: Run II data requires slightly softer gluon than Run I data)
- the (still) missing ingredient is the full NNLO pQCD correction to the cross section, but not expected to have much impact in practice

pdfs at LHC – the issues

- high precision cross section predictions require accurate knowledge of pdfs: $\delta\sigma_{th} = \delta\sigma_{pdf} + ...$
 - → improved signal and background predictions
 - → easier to spot new physics
- 'standard candle' processes (e.g. σ_z) to
 - check formalism (factorisation, DGLAP, ...)
 - measure machine luminosity?
- learning more about pdfs from LHC measurements. e.g.
 - high-E_T jets → gluon?
 - W⁺,W⁻,Z⁰ \rightarrow quarks?
 - forward DY \rightarrow small x?
 - - ...

standard candles: σ(W,Z) @ LHC

- cross sections (total and rapidity distributions) known to NNLO pQCD and NLO EW; perturbation series seems to be converging quickly
- EW parameters well measured at LEP
- samples pdfs where they are well measured (in x) in DIS
- ... although the mix of quark flavours is different: F_2 and $\sigma(W,Z)$ probe different combinations of $u,d,s,c,b \rightarrow$ sea quark distributions important
- precise measurement of cross section ratios at LHC (e.g. σ(W⁺)/σ(W⁻), σ(W[±])/σ(Z)) will allow these subtle effects to be explored further

at LHC, ~30% of W and Z total cross sections involves s,c,b quarks

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Tevatron, $\sqrt{s} = 1.96 \text{ TeV}$,	$B_{l^+l^-} \cdot \sigma_Z \text{ (nb)}$	R_{WZ}
MSTW 2008 NLO $ \left[2.659^{+0.057}_{-0.045} \left(^{+2.1\%}_{-1.7\%} \right) \right] 0.2426^{+0.0054}_{-0.0043} \left(^{+2.2\%}_{-1.8\%} \right) \left[10.96^{+0.03}_{-0.02} \left(^{+0.3\%}_{-0.2\%} \right) \right] $	MSTW 2008 LO	$1.963^{+0.025}_{-0.028} \left(^{+1.2\%}_{-1.4\%}\right)$	$0.1788^{+0.0023}_{-0.0025} \begin{pmatrix} +1.3\% \\ -1.4\% \end{pmatrix}$	$10.98^{+0.02}_{-0.03} \begin{pmatrix} +0.2\% \\ -0.3\% \end{pmatrix}$
	MSTW 2008 NLO	$2.659^{+0.057}_{-0.045} \left(^{+2.1\%}_{-1.7\%} \right)$		
1 210/07	MSTW 2008 NNLO	$2.747^{+0.049}_{-0.042} \stackrel{(+1.8\%)}{(-1.5\%)}$	$0.2507^{+0.0048}_{-0.0041} \stackrel{(+1.9\%)}{(-1.6\%)}$	$10.96^{+0.03}_{-0.03} \stackrel{(+0.2\%)}{(-0.2\%)}$

LHC, $\sqrt{s} = 10 \text{ TeV}$	$B_{l\nu} \cdot \sigma_W \text{ (nb)}$	$B_{l^+l^-} \cdot \sigma_Z \text{ (nb)}$	R_{WZ}
MSTW 2008 LO	$12.57^{+0.13}_{-0.19} \left(^{+1.1\%}_{-1.5\%}\right)$	$1.163^{+0.011}_{-0.017} \left(^{+1.0\%}_{-1.5\%}\right)$	$10.81^{+0.02}_{-0.02} \begin{pmatrix} +0.2\% \\ -0.2\% \end{pmatrix}$
MSTW 2008 NLO	$14.92^{+0.31}_{-0.24} \left(^{+2.1\%}_{-1.6\%}\right)$	$1.390^{+0.029}_{-0.022} \left(^{+2.1\%}_{-1.5\%}\right)$	$10.73^{+0.02}_{-0.02} \begin{pmatrix} +0.2\% \\ -0.2\% \end{pmatrix}$
MSTW 2008 NNLO	$15.35^{+0.26}_{-0.25} \left(^{+1.7\%}_{-1.6\%}\right)$	$1.429^{+0.024}_{-0.022} \left(^{+1.7\%}_{-1.6\%}\right)$	$10.74^{+0.02}_{-0.02} \stackrel{(+0.2\%)}{_{-0.2\%}}$

LHC, $\sqrt{s} = 14 \text{ TeV}$	$B_{l\nu} \cdot \sigma_W \text{ (nb)}$	$B_{l^+l^-} \cdot \sigma_Z \text{ (nb)}$	R_{WZ}
MSTW 2008 LO	$18.51^{+0.22}_{-0.32} \binom{+1.2\%}{-1.7\%}$	$1.736^{+0.019}_{-0.028} \left(^{+1.1\%}_{-1.6\%}\right)$	$10.66^{+0.02}_{-0.02} \begin{pmatrix} +0.2\% \\ -0.2\% \end{pmatrix}$
MSTW 2008 NLO	$21.17^{+0.42}_{-0.36} \binom{+2.0\%}{-1.7\%}$	$2.001^{+0.040}_{-0.032} \left(^{+2.0\%}_{-1.6\%}\right)$	$10.58^{+0.02}_{-0.02} \begin{pmatrix} +0.2\% \\ -0.2\% \end{pmatrix}$
MSTW 2008 NNLO	$21.72^{+0.36}_{-0.36} \left(^{+1.7\%}_{-1.7\%}\right)$	$2.051_{-0.033}^{+0.035} \left({}^{+1.7\%}_{-1.6\%} \right)$	$10.59^{+0.02}_{-0.03} \left(^{+0.2\%}_{-0.3\%}\right)$

Note: at NNLO, factorisation and renormalisation scale variation M/2 → 2M gives an additional ± 2% change in the LHC cross sections

comparison with measured Tevatron cross sections

data errors dominated by ±6% systematic error from luminosity uncertainty!

predictions for $\sigma(W,Z)$ @ LHC (Tevatron)

	$B_{lv} . \sigma_W$ (nb)	$B_{II} . \sigma_{Z}$ (nb)
MSTW 2008 NLO	21.17 (2.659)	2.001 (0.2426)
MSTW 2008 NNLO	21.72 (2.747)	2.051 (0.2507)

MRST 2006 NLO	21.21 (2.645)	2.018 (0.2426)
MRST 2006 NNLO	21.51 (2.759)	2.044 (0.2535)
MRST 2004 NLO	20.61 (2.632)	1.964 (0.2424)
MRST 2004 NNLO	20.23 (2.724)	1.917 (0.2519)
CTEQ6.6 NLO	21.58 (2.599)	2.043 (0.2393)
Alekhin 2002 NLO	21.32 (2.733)	2.001 (0.2543)
Alekhin 2002 NNLO	21.13 (2.805)	1.977 (0.2611)

MSTW

predictions for $\sigma(W,Z)$ @ Tevatron, LHC

W and Z total cross sections at the Tevatron

W and Z total cross sections at the LHC

- MRST/MSTW NNLO: 2008 ~ 2006 > 2004 mainly due to changes in treatment of charm
- CTEQ: 6.6 ~ 6.5 > 6.1 due to changes in treatment of s,c,b
- NLO: CTEQ6.6 2% higher than MSTW 2008 at LHC, because of slight differences in quark (u,d,s,c) pdfs, difference within quoted uncertainty

$$R_{\pm} = \sigma(W^+ \rightarrow l^+ \nu) / \sigma(W^- \rightarrow l^- \nu)$$

$$R_{\pm} \approx \frac{u(x_1)\bar{d}(x_2) + c(x_1)\bar{s}(x_2) + (1 \leftrightarrow 2)}{d(x_1)\bar{u}(x_2) + s(x_1)\bar{c}(x_2) + (1 \leftrightarrow 2)}$$

$$\delta\sigma_{th}\approx\delta\sigma_{pdf}\approx\pm1\%,$$

$$\delta\sigma_{expt} \approx ???$$

W⁺ and W⁻ total cross sections at the LHC

LHC, $\sqrt{s} = 10 \text{ TeV}$	$B_{l\nu} \cdot \sigma_{W^+} \text{ (nb)}$	$B_{l\nu} \cdot \sigma_{W^-} \text{ (nb)}$	R_{\pm}
MSTW 2008 LO	$7.35^{+0.08}_{-0.12} \left(^{+1.1\%}_{-1.6\%}\right)$	$5.22^{+0.06}_{-0.09} \left(^{+1.1\%}_{-1.7\%}\right)$	$1.408^{+0.015}_{-0.012} \begin{pmatrix} +1.0\% \\ -0.8\% \end{pmatrix}$
MSTW 2008 NLO	$8.62^{+0.18}_{-0.14} \left({}^{+2.1\%}_{-1.7\%} \right)$	$6.30^{+0.14}_{-0.11} \left({}^{+2.2\%}_{-1.7\%} \right)$	$1.367^{+0.012}_{-0.010} \begin{pmatrix} +0.9\% \\ -0.7\% \end{pmatrix}$
MSTW 2008 NNLO	$8.88^{+0.15}_{-0.15} \left(^{+1.7\%}_{-1.6\%}\right)$	$6.47^{+0.11}_{-0.11} \left(^{+1.7\%}_{-1.6\%}\right)$	$1.373^{+0.012}_{-0.010} \binom{+0.8\%}{-0.7\%}$
	0.10 (-1.0707	3.11 (-1.0707	0.010 (-0.1707
LHC, $\sqrt{s} = 14 \text{ TeV}$		(1.070)	3,170
LHC, $\sqrt{s} = 14 \text{ TeV}$ MSTW 2008 LO	$B_{l\nu} \cdot \sigma_{W^+} \text{ (nb)}$	$B_{l\nu} \cdot \sigma_{W^-} \text{ (nb)}$	R_{\pm} 1.366 ^{+0.013} (+0.9%)
· · ·	$B_{l\nu} \cdot \sigma_{W^+} \text{ (nb)}$	$B_{l\nu} \cdot \sigma_{W^-} \text{ (nb)}$	R_{\pm} 1.366 ^{+0.013} (+0.9%)

using the W⁺⁻ charge asymmetry at the LHC

- at the Tevatron $\sigma(W^+) = \sigma(W^-)$, whereas at LHC $\sigma(W^+) \sim 1.3\sigma(W^-)$
- can use this asymmetry to calibrate backgrounds to new physics, since typically $\sigma_{NP}(X \to W^+ + ...) = \sigma_{NP}(X \to W^- + ...)$
- example:

$$gg \rightarrow t\bar{t} \rightarrow W^+W^-b\bar{b} \rightarrow W^{\pm}(\rightarrow l^{\pm} + \nu) + 4jets$$

in this case

$$\sigma_{\text{signal}}(W^+ + 4\text{jets}) = \sigma_{\text{signal}}(W^- + 4\text{jets})$$

whereas...

$$\sigma_{\text{QCDbkgd}}(W^+ + 4 \text{jets}) \neq \sigma_{\text{QCDbkgd}}(W^- + 4 \text{jets})$$

which can in principle help distinguish signal and background

W⁺⁻ + n jets @ LHC

for $n_{jet} > 1$ dominant subprocess is:

	%qq	%qg	%gg
W+0j	100	0	0
W+1j	75	25	0
W+2j	18	75	7
W+3j	18	72	10

W+/W- ratio:

- very sensitive to u/d pdf ratio
- varies with y_W
- depends slightly on n_{jet} and E_{Tj}(min)
- fairly independent of scale choice etc

pdfs at LHC – the issues

- high precision cross section predictions require accurate knowledge of pdfs: $\delta\sigma_{th} = \delta\sigma_{pdf} + ...$
 - → improved signal and background predictions
 - → easier to spot new physics
- 'standard candle' processes (e.g. σ_7) to
 - check formalism (factorisation, DGLAP, …)
 - measure machine luminosity?
- learning more about pdfs from LHC measurements. e.g.
 - high-E_T jets → gluon?
 - W⁺,W⁻,Z⁰ \rightarrow quarks?
 - forward DY \rightarrow small x?

— ...

impact of LHC measurements on pdfs

- the standard candles: central σ(W,Z,tt,jets) as a probe and test of pdfs in the x ~ 10 -2±1, Q² ~ 10⁴⁻⁶ GeV² range where most New Physics is expected (H, SUSY,)
- forward production of (relatively) low-mass states (e.g. γ*,dijets,...) to access partons at x<<1 (and x~1)

LHCb

Unique features

- pseudo-rapidity range 1.9 4.9
 - 1.9 2.5 complementary to ATLAS/CMS
 - -> 2.5 unique to LHCb
- beam defocused at LHCb: 1 year of running = 2 fb⁻¹
- trigger on low momentum muons: p > 8 GeV, p_T > 1 GeV

access to unique range of (x,Q^2)

LHCb

 \rightarrow detect forward, low p_T muons from $q\bar{q} \rightarrow \mu^+\mu^-$

LHC parton kinematics

$\gamma*->\mu\mu$ selection

• 4-vector Pythia + LHCb acceptance

Dominant at Z but

large backgrounds at low masses

8th April 2008

Ronan McNulty et al, at DIS08

Impact of 1 fb⁻¹ LHCb data for forward Z and γ^* (M = 14 GeV) production on the gluon distribution uncertainty

summary

- precision phenomenology at high-energy colliders such as the LHC requires an accurate knowledge of the distribution functions of partons in hadrons
- determining pdfs from global fits to data is now a major industry... the MSTW collaboration has last month released its latest (2008) LO, NLO, NNLO sets
- pdf uncertainty for 'new physics' cross sections not expected to be too important (few % level), apart from at very high mass
- ongoing high-precision studies of standard candle cross sections and ratios
- potential of LHCb to access very small x via low-mass Drell-Yan lepton pair production

extra slides

MSTW2008 vs MRST2006

MSTW2008 vs Alekhin2002

MSTW2008 vs NNPDF1.0

$R(W/Z) = \sigma(W)/\sigma(Z)$ @ Tevatron & LHC

CDF 2007: $R = 10.84 \pm 0.15 \text{ (stat)} \pm 0.14 \text{ (sys)}$