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Why a Muon Collider?

• Point like interactions as in linear e+e−

• Negligible synchrotron radiation:
Acceleration in rings Small footprint Less rf Hopefully cheaper

• Collider is a Ring
≈ 1000 crossings per bunch Larger spot Easier tolerances 2 Detectors

• Negligible Beamstrahlung Narrow energy spread

• 40,000 greater S channel Higgs Enabling study of widths
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Schematics of Collider and Neutrino Factory

• Much of the R&D is common and has been pursued by the same US collaboration

• Significant European role only in Neutrino Factory

• Recent FNAL involvement specifically in Collider
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Collider Parameters

C of m Energy 1.5 4 TeV
Luminosity 1 3 (6) 1034 cm2sec−1

Beam-beam Tune Shift 0.1 0.1
Muons/bunch 2 2 1012

Ring <bending field> 5.2 10.4 T
Ring circumference 3 4 km
Beta at IP = σz 10 10 mm
rms momentum spread 0.1 0.12 %
Muon Beam Power 7.5 9 (18) MW
Required depth for ν rad 13 135 (270) m
Repetition Rate 12 6 (12) Hz
Proton Driver power 4 1.8 (3.6) MW
Muon Trans Emittance 25 25 pi mm mrad
Muon Long Emittance 72,000 72,000 pi mm mrad

• Emittance and bunch intensity requirement same for both examples

• Luminosities (∆E < 1%) are comparable to CLIC’s

• Depth for ν radiation for off site dose < 1 mrem/year (1/10 US Federal limit)
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THE EASY PART

Proton driver
Need few (12 Hz), very large, very short (3 ns) proton bunches

p Energy Intensity
56 GeV 40 Tp
8 GeV 250 Tp

• FNAL Project X

– 8 GeV H− linac,

– Accumulation (in the Re-cycler ?)

– Acceleration to 56 GeV in the Main Injector

• Do it all at 8 GeV

– Serious space charge

– Requires very large acceptance accumulator

• Lower Energy Linac (2-4 GeV)

– e.g. SPL

– Plus synchrotron e.g. PS2
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Target & Capture

• 1 cm rad Mercury Jet Target

• 8 cm rad, 20 T capture (capture pt≤240 MeV/c)

• Adiabatic taper to 2 T
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MERIT Experiment at CERN

• 15 T pulsed magnet

• 1 cm rad mercury jet

• Up to 30 Tp cf 40 Tp at 56 GeV

• Magnet lowers splash velocities

• Density persists for 100 micro sec

• No problems found
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Phase Rotation

• To capture ± 100% dp/p

• Phase rotate to 15 bunches ± 8% dp/p

• Bunch first, then Rotate (Neuffer method:)

• Frequencies of bunching and rotation must change as function of drift

• Alternative system rotates first with induction linacs, then bunches

• But induction linacs are expensive
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Acceleration

• Easy with Recirculating linear accelerators (RLAs)
Using ILC-like 1.3 GHz rf

• Lower cost solution would use Pulsed Synchrotrons

– Pulsed synchrotron 30 to 400 GeV (in Tevatron tunnel)

– SC & pulsed magnet synchrotron 400-900 GeV (in Tevatron tunnel)

– SC & pulsed magnet synchrotron 900-2000 GeV (in new tunnel)

• Pulsed dipoles first oppose, and later support the bending form 8 T super-
conducting magnets
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Collider Rings

• 1.5 TeV (c of m) Design (Gianfelice, Alexahin)

– Meets requirements

– But early dipole may deflect unacceptable background into detector

• 4 TeV (c of m) 1996 design by Oide had 3 mm β∗

– Meets requirements in ideal simulation

– But is too sensitive to errors to be realistic

– 10 mm (used here) should be possible
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Collider Ring Dipole Magnets

• Luminosity ∝ 1/circumference ∝< B >

So very high field dipoles desirable

• 1/3 of beam energy (3-6 MW) to decay electrons

• 15 T HTS Open Mid-plane dipole (Gupta) is good option
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Detector From 1996 Study of 4 TeV Collider

• Sophisticated shielding designed in 1996 4 TeV Study (Stumer, Mokhov)

• GEANT simulations then indicated acceptable backgrounds

• But tungsten shielding takes up 20 degree cone

• Smaller angle should be possible now with finer pixel detectors
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Layout of 4 TeV Collider using pulsed synchrotrons
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THE HARD PART

Muon Cooling
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Transverse Ionization Cooling

• Radiation cooling fails because mass is too high

• Electron beam and stochastic cooling are too slow

• Only Ionization cooling should work

• Cooling by ionization loss

• Heating by Coulomb scattering

• Gives minimum Emittance:

• C(mat, E) least for hydrogen

• Falls with Energy as dE/dx rises

εx,y(min) =
β⊥
βv

C(mat,E)

∝
C(mat,E)

βv Bz
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To reach ε⊥ of 25 µm

• Use liquid hydrogen for absorbers

• Use highest practical solenoid field (≈ 50 T)

• Use sufficiently low energy (≈ 6 MeV)
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• Transverse emittance achieved, but Longitudinal emittance is increasing rapidly
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Is 50 T Realistic ?

• 45 T hybrid at NHMFL, but uses 25W

• HTS critical fields ≈ 100 T

• HTS current densities ≈ jCu

• 50 T HTS solenoids seem possible

• Design under study at NHMFL
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50 T Cooling Simulation (In ICOOL R.Fernow)

Using six 50 T coils
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Trans cooling + Emittance Exchange = 6D Cooling

dp/p reduced
But σy increased

Long Emit reduced
Trans Emit Increased

= Emittance Exchange

Need lattices with:

• Substantial solenoid focusing

• Large momentum acceptance

• Dispersion

• Hydrogen absorbers

• And Acceleration
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Super-FOFO Lattices (Andy Sessler)

Lattice
without
bending

Bending added
to generate dispersion for 6D-cooling
Guggenheim geometry

Parameters

Stage freq (MHz) Grad MV/m Mag (T)
Initial 201 12 3
Mid 402 17 6
Final 805 20 12
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Slight complications: Pre-cooling & Bunch merging

• Phase rotation made 15 bunches of each sign
We require only one of each sign

• Charges must be separated for 6 D cooling
Pre cooling assumed to facilitate this

All simulated (at some level) assuming working rf in focusing magnetic fields
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Muon Ionization Cooling Experiment (MICE)
International collaboration at RAL, US, UK, Japan (Blondel)

• Will demonstrate transverse cooling in liquid hydrogen, including rf re-acceleration

• Uses a somewhat different version of ’Super FOFO’
But, as now configured, has now bending or emittance exchange

• Allows early test of emittance exchange without re-acceleration

• Later phase might test emittance exchange with re-acceleration
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MuCool, and MuCool Test Area (MTA) at FNAL
International collaboration US, UK, Japan (Bross)

• Liquid hydrogen absorber tested

• Open & pillbox 805 MHz cavities in magnetic fields to 4 T

• 201 MHz cavity tested to magnetic field of 0.7 T
Later to 2T

• High pressure H2 gas 805 MHz pillbox cavity tested

• Soon: 805 MHz gas Cavity with proton beam

HP Gas cavity 805 MHz in 4 T magnet 201 MHz next to magnet
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Experiments show breakdown in specified mag fields

Fits from proposed expla-
nation (Palmer Gallardo
Stratakis)

Possible solutions

• Magnetic Insulation

• High pressure hydrogen gas
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Possible Fix 1) Magnetic Insulation (Palmer)

• If magnetic field lines are parallel to an emitting surface

• All field emitted electrons will return to the surface with low energies and do
no damage

Form cavity sur-
face to follow
magnetic field
lines

• No dark current, No X-Rays !

• No danger of damaging surfaces

• But secondary emission → problems ? (Li SLAC)
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Incorporation of Magnetic Insulation in lattices

Particle losses increased - need to understand why

26



Possible Fix 2) High Pressure Gas (Johnson)

• High pressure hydrogen gas suppresses breakdown

• And can be used as primary absorber

• Lattices must have low beta everywhere

• Emittance exchange using LiH wedges
Or systems with longer paths for higher momenta (e.g. HCC)
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Helical Cooling Channel (HCC) (Derbenev Johnson)

• Muons move in helical paths in high pressure hydrogen gas

• Higher momentum tracks have longer trajectories giving momentum cooling
(emittance exchange)

• Required
Fields 50-
100% higher
than in
Guggenheim

• But transmis-
sion probably
better

• Engineering and safety are a concern

• Possible problem of rf breakdown or rf loss with intense muon beam transit

• Experiment with p beam soon at FNAL
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Current Organizations

• Neutrino Factory and Muon Collider Collaboration (NFMCC)

– US Labs and Universities (Founded in 1997)

– 2 spokespersons (Bross, Kirk) and Project manager (Zisman)

– Funded primarily by DoE

• Muon Collider Task Force

– Set up by FNAL Director in 2007

– Coordinated with NFMCC

• Total current effort ≈ 8 M$/year

R&D Needed to establish ”feasibility”

• Demonstrate mercury jet target (essentially done by MERIT)

• Demonstrate ionization cooling (should be done by MICE)

• Solve rf Breakdown problem

• Achieve, as nearly as possible, an end to end simulation

• Get a first estimate of cost

Desired time to establish ”feasibility” : 2012
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Time Line and Funding Needs (as presented to P5)

• Funding request includes that for Neutrino Factory R&D

• Funding increase (≈ 3×) needed if Muon Collider is to be credible option by 2012
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A Phased Approach (as presented to P5)
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Conclusion (as presented to P5)

• A broad and significant R&D program is already underway

• With an expanded program, we expect to be able to complete a
”Feasibility Study” by 2012, that would

– Establish the feasibility of a Muon Collider

– Greatly narrow the technology options

– Include, as near as possible, an end-end simulation, and

– Give a first rough cost estimates for two energies

• A Muon Collider could then be part of a phased program:

– Project X

– Muon Collider R&D area

– Neutrino Factory

– 1.5 TeV collider

– 4 TEV collider

• But for a Muon Collider to be a realistic option in 2012,
increased funding for R&D is needed
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Appendices

• Luminosity dependence

• Neutrino radiation

• Open mid-plane ring dipole

• Transmission

• Pulsed synchrotron details
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Luminosity Dependence

L = nturns fbunch
N2

µ

4πσ2
⊥

∆ν ∝
Nµ

ε⊥

L ∝ Bring Pbeam ∆ν
1

β∗

• Higher L/Pbeam requires lower β∗ or correction of ∆ν

• Lower emittances do not directly improve Luminosity/Power

• But for fixed ∆ν, ε⊥ must be pretty small to avoid Nµ becoming unreasonable
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Neutrino Radiation Constraint

Radiation ∝
Eµ Iµ σν

θ R2
∝

Iµ γ3

D
∝

L β⊥

∆ν < B >

γ2

D

For fixed ∆ν, β⊥ and < B >; and L ∝ γ2:

Radiation ∝
β⊥

∆ν < B > D
γ4

For D=135 m R=40 Km for 4 TeV
For D=540 m R=80 Km for 8 TeV
OK up to 8 TeV, but a problem higher
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Muon Transmission

Collider parame-
ters assumed 7%
muon transmis-
sion
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• This is an optimistic estimate, based on pre-magnetic Insulation lattices

• Magnetically Insulated lattices appear to have less transmission

• Lower overall transmission:

– lowers luminosity by the square (L ∝ N2)

– or increases proton power by inverse square (P ∝ N−2)
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Pulsed Synchrotron Details
• Both rings have lattices similar to Tevatron and fit in the Tevatron Tunnel

• For 30-400 GeV

– Ramped quadrupoles 2.2 to 30 T/m in 0.57 msec (400 Hz)

– Ramped dipoles -0.13 T to 1.8 T in 0.59 msec (400 Hz)

– 13 GV of superconduction 1.3 GHz rf

– muon Survival 80%

• For 400-750(937) GeV

– Longer ramped quads 13 T/m to 30 T/m in 0.92 msec (150 Hz) quads

– Fixed 8 T dipoles, alternating with

– Ramped dipoles -1.8 T to 1.8 T in 0.92 msec (550 Hz)

– Dipoles initially opposed, then act in unison

– 8 GV of superconduction 1.3 GHz rf

• Magnet details

– Pulsed magnets use .28 mm grain oriented Si steel ok at 1.8 T

– Cables of multiple insulated 2 mm wires

– OK single turn Voltage 3100 V

– Losses in the yoke steel (520+910=1430 kW total at 13 Hz)

• rf details

– 36 10 MW klystrons ? (this number for 3 Hz, not 13 Hz)

– 3 cells per coupler

– 5 MW to modulators, 1 MW to cryogenics

– Loading is 8%: wakefields and HOM need study
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