

The Physics Case for CLIC

Marco Battaglia UC Berkeley – LBNL, Berkeley and Universite' Claude Bernard - IPN Lyon

> *From the LHC to a Future Collider* CERN, 19 February, 2009

Physics Motivations for e⁺e⁻ at and beyond 1 TeV

<u>Precision Study of Rare/Suppressed SM Processes</u>: Higgs Sector: $g_{H\mu\mu}$, g_{Hbb} for intermediate M_H , g_{HHH} , g_{ttH}

<u>Access New Thresholds at the Tera-scale</u>: Identify nature of New Physics and its connection to Cosmology

<u>Probe New Phenomena beyond LHC Reach</u>: Precision study of EW observables

Physics and Experimentation at and beyond 1 TeV

Physics Signatures

Independent of <u>Physics Scenarios</u> can we identify <u>Physics Signatures</u> most relevant to e⁺e⁻ physics at 1 TeV and beyond ?

Reach and Accuracy

Is the <u>Physics Reach</u> complementary and supplemental to the LHC capabilities ? Is the study of these Physics Signatures enabled by the <u>Accelerator Parameters</u> ?

Is the signature e^+e^- Accuracy preserved at 1 TeV and beyond ?

Experimental Issues

Is <u>Particle Flow</u> applicable to multi-TeV collisions ?

Are the <u>Forward</u> <u>Regions</u> exploitable ? Is accurate <u>Jet Flavour</u> <u>Tagging</u> possible ?

Obser	vables fro	m 0.2	TeV t	o 3 T	eV (S	SM E	vts)	
			Jet Mu	ltiplici	ity		B	ERKELEY LAB
	\sqrt{s} (TeV	7) 0.0	09 0.2	0 0.8	5 0.8	3.0	5.0	
	$< N_{Jets}$	> 2.	.8 4.	2 4.8	8 5.3	6.4	6.7	
Parton Energy								
	\sqrt{s} ('	TeV)	0.	2	0.5	1.0	3.0	
	<e<sub>Parton2</e<sub>	> (GeV	() 3	2	64	110	240	
		B Ha	dron D	ecay I	Distanc	e		
- J	\sqrt{s} (TeV)	0.09	0.2	0.35	0.5		3.0	1
- =	Process $d_{ m space}$ (cm)	Z^0 0.3	HZ 0.3	HZ 0.7	HZ 0.85	H^+	$\begin{array}{c c} H^- & & b\bar{b} \\ 2.5 & & 9.0 \end{array}$	

LAWRENCE BERKELEY NATIONAL LABORATORY

MB, hep-ph/0103338

Precision Study of Rare/Suppressed SM Processes

The Higgs Boson and CLIC

rrrr

arXiv:0811:0009v2

Fermion Couplings: $e^+e^- \rightarrow v_e v_e H^0 \rightarrow bb^-$

Large WW fusion cross section yields samples of $(0.5-1) \times 10^{6}$ H bosons;

Gain in cross section partly offset by increasingly forward production of H, still within $|\cos \theta| < 0.92$ there is a 1.7 x gain at 3 TeV compared to 1 TeV.

LAWRENCE BERKELEY NATIONAL LABORATORY

hep-ph/0211207

Fermion couplings: $e^+e^- \rightarrow v_e v_e H \rightarrow \mu^+\mu^-$

Full simulation CLIC analysis based on ILC C++ software and Si D detector model: $e^+e^- \rightarrow v_e v_e H \rightarrow \mu^+\mu^+$

rrrr

BERKELEY LA

LAWRENCE-BERKETEY NATIONAL LAPORATORY MB, JPhys G35 (2008)

The Higgs Sector at CLIC: Heavy Higgs Profile

CLIC promises to preserve LC signature capabilities for Higgs studies at large boson masses:

Decay-independent Higgs observation and mass measurement in $e^+e^- \rightarrow e^+e^- H^0$ Possible sensitivity to triple Higgs coupling for heavy Higgs bosons

Experimental Issues

Tag and measure ~250 GeV forward electrons in presence of $\gamma\gamma \rightarrow$ hadrons background

Simulation shows that background is manageable down to 300 mrad for hadronic jets and 100 mrad for isolated energetic electrons;

Access New Thresholds at the Tera-scale

15/1/201 Lindvind

1

180

185

Waiting for LHC results, many attempts to define "most likely" region(s) of parameters based on LEP+Tevatron, low energy data and Cosmology (DM and/BBN):

NATIONAL LABORATORY

1) cMSSM with M_W , sin² ϑ_{eff} , M_h , $(g-2)_{\mu}$, BR $(b \rightarrow s\gamma)$ constraints and m₀ tuned to match Ω_{CDM} h² at various tan β values

2) cMSSM with 15 constraints (EW, B physics, $(g-2)_{\mu}$ and $\Omega_{CDM}h^2$)

3) NUHM SUSY with 15 constraints (EW, B physics, $(g-2)_{\mu}$ and $\Omega_{CDM}h^2$)

2) cMSSM with 15 constraints (EW, B physics, $(g-2)_{\mu}$ and $\Omega_{CDM}h^2$)

allowed region largely extends towards high mass solutions

Buchmuller et al., JHEP 0809 (2008)

4) In scenarios with gravitino LSP, long-lived staus may form metastables states with nuclei affecting Big Bang Nucleosynthesis; These scenarios indicate very large sparticle masses, even too large for detection at LHC but well suited for CLIC:

SUSY Heavy Higgs Bosons: M_A

5) String-inspired Large Volume Scenario SUSY with MCMC in Bayesian statistics formalism

LAWRENCE BERKELEY NATIONAL LABORATORY

Allanach et al., JHEP 0808 (2008)

SUSY Heavy Higgs Bosons: $M_A - \tan \beta$

Lower energy LC Higgs data interpretation requires excellent control of parametric and theoretical uncertainties:

2HDM Model: M_{H} - tan β

arXiv:0811:0009v2

Heavy Higgs Bosons: H[±]at 3 TeV

Large jet multiplicity gives particle overlaps in calorimeters. study distance (charged particle to closest cluster) (full G4 simulation)

rrrr

BERKELEY LA

Establishing the Nature of New Physics

LAWRENCE BERKELEY NATIONAL LABORATORY

JHEP 0507 (2005)

rrrr

Imi

The LHC SUSY Inverse Problem

Given LHC data can we identify the nature of the underlying theory ?

Study the inverse map from the LHC signature space to the parameter space of a given theory model: MSSM.

<u>43026 models</u> tested in 15-dim parameter space \rightarrow <u>283 pairs</u> of models have indistinguishable signatures at LHC.

LAWRENCE BERKELEY NATIONAL LABORATORY

Arkani Hamed et al, JHEP 0608 (2006)

....

BERKELEY LA

Solving the SUSY Inverse Problem at LC

Consider <u>162 pairs</u> indistinguishable at LHC:
only <u>52%</u> (85 pairs) have charged SUSY particles kinematically accessible at 0.5 TeV, <u>100 %</u> accessible > 1 TeV;
<u>79%</u> (57 out of 73 pairs) can be distinguished at 5 σ level at 0.5 TeV;
1-3 TeV data needed to extend sensitivity and solve the LHC inverse problem over (almost) full parameter space

Final State	500 GeV	$1 \mathrm{TeV}$
$\tilde{e}_L^+ \tilde{e}_L^-$	9	82
$\tilde{e}_R^+ \tilde{e}_R^-$	15	86
$\tilde{e}_L^{\pm} \tilde{e}_R^{\mp}$	2	61
$\tilde{\mu}_L^+ \tilde{\mu}_L^-$	9	82
$\tilde{\mu}_R^+ \tilde{\mu}_R^-$	15	86
Any selectron or smuon	22	137
$\tilde{\tau}_1^+ \tilde{\tau}_1^-$	28	145
$\tilde{\tau}_2^+ \tilde{\tau}_2^-$	1	23
$\tilde{\tau}_1^{\pm} \tilde{\tau}_2^{\mp}$	4	61
$\tilde{\nu}_{e\mu}\tilde{\nu}^{*}_{e\mu}$	11	83
$\tilde{\nu}_{\tau} \tilde{\nu}_{\tau}^*$	18	83
$\tilde{\chi}_1^+ \tilde{\chi}_1^-$	53	92
Any charged sparticle	85	224
$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^{\mp}$	7	33
$\tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}$	180	236
$\tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}$ only	91	0
$\tilde{\chi}_1^0 + \tilde{\nu}$ only	5	0
$\tilde{\chi}_1^0 \tilde{\chi}_2^0$	46	178
$\tilde{\chi}_{1}^{0}\tilde{\chi}_{3}^{0}$	10	83
$\tilde{\chi}_2^0 \tilde{\chi}_2^0$	38	91
$\tilde{\chi}_2^0 \tilde{\chi}_3^0$	4	41
$\tilde{\chi}_{3}^{0}\tilde{\chi}_{3}^{0}$	2	23
Nothing	61	3

LAWRENCE BERKELEY NATIONAL LABORATORY

Berger et al, arXiv:0712.2965

An UED Inverse Problem

Mapping UED the parameter space from measurements at 1 TeV and 3 TeV linear collider:

Understand SUSY-Cosmology Connection

What if there is no Higgs ?

4088 40000 Entries 1320. 499.6 100 140 $e^+e^- \rightarrow W_L W_L \nu \nu$ 120 including γγ → hadrons 100 80 1400 1600 1800 2000

Study strong interaction of W/Z bosons and identify resonance formation in the TeV region;

Example 2 TeV resonance with 12 fb production cross section at 3 TeV, ~4 fb after acceptance cuts:

LAWRENCE BERKELEY NATIONA

BORATORY De Roeck, Snowmass 2001

Experimental Issues

 $\gamma\gamma \rightarrow$ hadrons background

Charged-Neutral Particle Distance in Calorimeters

θ>

BERKELEY LAP

LAWRENCE BERKELEY NATIONAL LABORATORY

1

New Resonances at CLIC

<u>Luminosity spectrum</u> effect on mass and width reconstruction at CLIC:

5-point scan of broad resonance (3 TeV SSM Z') with ~ 1 year of data under two assumptions for luminosity spectrum (CLIC.01 and CLIC.02)

rrrr

BERKELEY LA

KK Resonances in ED Scenarios

Observe interference between Z and γ KK excitations accounting for CLIC luminosity spectrum:

LAWRENCE BERKELEY NATIONAL LABORATORY MB et al.,

JHEP 0212 (2002)

rrrr

BERKELEY LAP

Probe New Phenomena beyond LHC Reach

New Physics beyond the LHC Reach

Precision electro-weak observables in $e^+e^- \rightarrow ff$ at 1- 3 TeV

$$\frac{|\sigma^{SM} - \sigma^{SM + Z'}|}{\delta\sigma} \propto \frac{1}{M_{Z'}^2} \sqrt{sL} > \sqrt{\Delta\chi^2}$$

Observable	Relative stat. accuracy			
	$\delta {\cal O} / {\cal O}$ for 1 ab ⁻¹			
$\sigma_{\mu^+\mu^-}$	± 0.010			
$\sigma_{b\bar{b}}$	\pm 0.012			
$\sigma_{t\bar{t}}$	\pm 0.014			
$A_{\rm FB}^{\mu\mu}$	± 0.018			
$A_{\rm FB}^{bb}$	± 0.055			
$A_{\rm FB}^{tt}$	\pm 0.040			

Grefe, CLIC08

LAWRENCE BERKELEY NATIONAL LABORATORY

CERN-2004-005

New Physics beyond the LHC Reach: ED

Reach for ADD model scale M_s vs. integrated luminosity for 3 TeV and 5 TeV data:

LAWRENCE BERKELEY NATIONAL LABORATORY

CERN-2004-005

New Physics beyond the LHC Reach: Contact Interactions

Λ reach for $\sqrt{s}=3~{ m TeV}$ and $\int {\cal L}=1~{ m ab}^{-1}$

MB et al, hep-ph/0112270

Experimental Issues

Perform precision tracking and vertexing accounting for beam stay clear and hit density from pair background;

Optimise pixel size, bunch tagging,...

BERKELEY NATIONAL LABORATORY Schulte. CLIC08

Theory Issues

Anticipated experimental accuracy in determination of EW observables at and beyond 1 TeV, needs to be matched by theoretical predictions accurate at O(1%) to ensure sensitivity to New Physics;

Electroweak radiative corrections include large Sudakov logarithms $\propto \alpha^n \log^{2n}(M^2/s)$ which will contribute sizeable uncertainties

Example: at 1 TeV W-boson corrections of the form $\alpha \log^2(M_w^2/s)$ amount to 19%.

Beccaria, CERN-2004-005

Outlook

Waiting for first LHC data, there is a compelling case for vigorously pursuing a technology able to offer e⁺e⁻ collisions at, and beyond, 1 TeV with high luminosity;

CLIC offers unmatched energy range from 0.5 TeV up to 3 TeV making it an extremely appealing option for accessing the energy scale of LHC and beyond with e⁺e⁻ collisions;

Physics potential at 1 - 3 TeV appears very rich, preserving the signature e⁺e⁻ features of cleanliness and accuracy represents a challenge, which needs a combined effort from physics benchmarking, detector R&D, machine parameter optimisation;

Optimal balance between very high precision at high energy and high precision at very high energy can be assessed only with first LHC results at hand. For now enough to do tackling the issues above.