

The Physics Case for CLIC

Marco Batta glia UC Berkeley – LBNL, Berkeley and Universite' Claude Bernard - IPN Lyon

> From the LHC to a Future Collider **CERN, 19 February, 2009**

Physics Motivations for e^+e − **at and beyond 1 TeV**

Precision Study of Rare/Suppressed SM Processes: Higgs Sector: $g_{\text{H}\mu\mu}$, g_{Hbb} for intermediate M_H, g_{HHH} , g_{ttH}

Access New Thresholds at the Tera-scale: Identify nature of New Physics and its connection to Cosmology

Probe New Phenomena be yond LHC Reach: Precision study of EW observables

Physics and Experimentation at and beyond 1 TeV

Physics Signatures

Independent of Physics Scenarios can we identify <u>Physics Signatures</u> most relevant to e⁺e − physics at 1 TeV and beyond ? ? Accelerator Parameters ?

Reach and Accuracy

Is the Physics Reach complementary and supplemental to the LHC capabilities ? Is the study of these Physics Signatures enabled by the

Is the signature <u>e⁺e</u> − Accuracy preserved at 1 TeV and beyond ?

Experimental Issues

Is Particle Flow applicable to multi-TeV collisions ?

Are the Forward Regions exploitable ?

Is accurate Jet Flavour $? \mid$ Tagging possible ?

Observables from 0.2 TeV to 3 TeV (SM Evts) BERKELEY LAB Jet Multiplicity TeV 0.09 0.20 0.5 0.8 3.0 5.0 4.2 $< N_{Jets} >$ 2.8 4.8 5.3 6.4 6.7 **Parton Energy** 'Te\ S **0 2. 0 5. 1 0. 3 0.** \leq **E**_{Parton}> (GeV) **32 64 110 240 B Hadron Decay Distance** \sqrt{s} (TeV) 3.0 0.09 0.2 0.35 0.5 Z^0 **Process** HZ HZ HZ $H^+H^$ $b\bar{b}$

LAWRENCE BERKELEY NATIONAL LABORATORY

0.7

0.85

 0.3

 0.3

 d_{space} (cm)

hep-ph/0103338

MB,

9.0

2.5

Precision Study of Rare/Suppressed SM Processes

The Higgs Boson and CLIC

 $rrrri$

lmi

Flaecher et al. arXiv:0811:0009v2

Fermion Couplings: e + e − J ν **e**ν **eH** $0 \rightarrow bb$

Large WW fusion cross section yields samples of (0.5-1) x 10 **6** H bosons;

Gain in cross section partly offset by increasingly forward production of H, still within $|\cos \theta|$ < 0.92 there is a 1.7 x gain at 3 TeV compared to 1 TeV.

LAWRENCE

Fermion couplings: e + e − \rightarrow ∇ _eν H → μ⁺μ⁻

Full simulation CLICZ analysis based on ILC C_{+} + software and SiD detector model: e $^+\mathrm{e}$ − → ν_eν.H| −

 $\frac{1}{2}$

BERKELEY LA

NATIONAL LAPORATORY MB, JPhys G35 (2008) LAWRENG

The Higgs Sector at CLIC: Heavy Higgs Profile

CLIC promises to preserve LC signature capabilities for Higgs studies at large boson masses:

0

Decay-independent Higgs observation and mass measurement in e $^+\mathrm{e}$ – → e $^+\mathrm{e}$ − H Possible sensitivity to triple Higgs coupling for heavy Higgs bosons

Experimental Issues

Tag and measure ~250 GeV forward electrons in presence of $\gamma \rightarrow$ hadrons background
Simulation shows that background

is manageable down to 300 mrad for hadronic jets and 100 mrad for isolated energetic electrons;

Access New es ^o ds ^e ^e New Thresholds at the Tera-sc ^e al

180 185

ାର୍ଚ

edig lini**on**
S

-f

Waiting for LHC results, many attempts to define "most likely" region(s) of parameters based on LEP+Tevatron, low energy data and Cosmology (DM and BBN):

NATIONAL LABORATORY

1) cMSSM with $M_{_W}, \sin^2\vartheta_{\rm eff}$, $M_{_h}, (g-2)_{_\mu}, \text{BR}(b\rightarrow s\gamma)$ constraints and $\boldsymbol{\mathrm{m}}_0$ tuned to match Ω_{CDM} h² at various tan β values $M_{_W}$, sin² $v_{\rm eff}^2$, $M_{_h}$, (g -2)_{$_{\mu}$}, BR(b \rightarrow s $-2)$, BK($b \rightarrow$

2) cMSSM with 15 constraints (EW, B physics, $(g-2)_{μ}$ and Ω_{CDM} h **2** (EW, B physics, $(g-2)$ _u and $\Omega_{CDM}h^2$) || (EW, B physics, $(g-2)$ _u and $\Omega_{CDM}h$

3) NUHM SUSY with 15 constraints (EW, B physics, (g-2)_μ and $\Omega_{\rm CDM}$ h \parallel (EW, B physics, (g-2)_u and $\Omega_{CDM}h^2$)

2) cMSSM with 15 constraints (EW, B physics, $(g-2)_{μ}$ and Ω_{CDM} h **2** (EW, B physics, $(g-2)$ _u and $\Omega_{CDM}h^2$)

allowed region largely extends) | towards high mass solutions

Buchmuller et al., JHEP 0809 (2008)

4) In scenarios with gravitino LSP, long-lived staus may form metastables states with nuclei affecting Big Bang Nucleosynthesis; These scenarios indicate very large sparticle masses, even too large for detection at LHC but well suited for CLIC:

SUSY Heavy Higgs Bosons: M A

5) String-inspired Large Volume Scenario SUSY with MCMC in Bayesian statistics formalism

JHEP 0808 (2008)

SUSY Heavy Higgs Bosons: M A– tan β

Lower energy LC Higgs data interpretation requires excellent control of parametric and theoretical uncertainties:

2HDM Model: MH - tan β

arXiv:0811:0009v2

Heavy Higgs Bosons: H^{\pm} **at 3 TeV**

Large jet multiplicity gives particle **Mokka SiD** overlaps in calorimeters. study distance (charged particle to closest cluster) (full G4 simulation)

 \overline{r}

BERKELEY LA

BERKELEY NATIONAL LABORATORY LAWRENCE

Establishing the Nature of New Physics

LAWRENCE BERKELEY NATIONAL LABORATORY

JHEP 0507 (2005)

 $\frac{1}{1}$

lmîl

The LHC SUSY Inverse Problem

Given LHC data can we identify the nature of the underlying theory ?

Study the inverse map from the LHC signature space to the parameter space of ^a given theory model: MSSM.

43026 models tested in 15-dim parameter space \rightarrow 283 pairs of models have indistinguishable signatures at LHC LHC.

LAWRENCE BERKELEY NATIONAL LABORATORY

Arkani Hamed et al, JHEP 0608 (2006)

 $rac{1}{2}$

BERKELEY LA

Solving the SUSY Inverse Problem at LC

LAWRENCE BERKELEY NATIONAL LABORATORY

Berger et al, arXiv:0712.2965

An UED Inverse Problem

Mapping UED the parameter space from measurements at 1 TeV and 3 TeV linear collider:

Understand SUSY-Cosmology Connection

What if there is no Higgs ?

4088 Entries 40000 1320. 499.6 100 140 $e^+e^- \rightarrow W_L W_L \nu \nu$ 120 \rightarrow hadrons 80 20 1.400 1600 1800

Study strong interaction of W_/Z bosons and identify resonance formation in the TeV re gion;

Example 2 TeV resonance with 12 fb production cross section at 3 TeV, ~4 fb after acceptance cuts:

LAWRENCE BERKELEY NATIONAL

De Roeck, BORATORY Snowmass 2001

Experimental Issues

 θ > C

 $0 > 0.1$

 $A>0.2$

γγ J hadrons **background**

Distance in Calorimeters

LAWRENCE BERKELEY NATIONAL LABORATORY

1

 0.1

 0.01

0.001

New Resonances at CLIC

Luminosity spectrum effect on mass and width reconstruction at CLIC:

5-point scan of broad resonance (3 TeV SSM Z') with ~ 1 year of data under two assumptions for luminosity spectrum (CLIC.01 and CLIC.02)

KK Resonances in ED Scenarios

 $rrrri$ **BERKELEY LAI**

Observe interference between Z and γ KK excitations accounting for CLIC luminosity spectrum:

LAWRENCE BERKELEY NATIONAL LABORATORY

JHEP 0212 (2002)

Probe New Phenomena beyond LHC Reach

New Physics beyond the LHC Reach

Precision electro-weak observables in e $^+ \mathrm{e}$ − J ff at 1- 3 TeV

$$
\frac{|\sigma^{SM}-\sigma^{SM+Z'}|}{\delta\sigma}\propto\frac{1}{M_{Z'}^2}\sqrt{sL}>\sqrt{\Delta\chi^2}
$$

Grefe, CLIC08 **LAWRENGE BERKELEY NATIONAL LABORATORY** CERN-2004-005

New Physics beyond the LHC Reach: ED

Reach for ADD model luminosity for 3 TeV and 5 TeV data:

LAWRENCE BERKELEY NATIONAL LABORATORY

CERN-2004-005

New Physics beyond the LHC Reach: Contact Interactions

Λ REACH FOR \sqrt{s} = 3 TeV AND $\int \mathcal{L} = 1$ AB⁻¹

MB et al, LAWRENCE BERKELEY NATIONAL LABORATORY

hep-ph/0112270

Experimental Issues

Schulte. CLIC08

50

60

20

30

r [mm]

Perform precision tracking and vertexing accounting for beam stay clear and hit density from pair background;

Optimise pixel size, bunch tagging,...

Theory Issues

Anticipated experimental accuracy in determination of EW observables at and beyond 1 TeV, needs to be matched by theoretical predictions accurate at *O*(1%) to ensure sensitivity to New Physics;

Electroweak radiative corrections include large Sudakov logarithms which will contribute sizeable uncertainties

Example: at 1 TeV W-boson corrections of the form amount to 19%.

Beccaria, LAWRENCE BERKELEY NATIONAL LABORATORY

CERN-2004-005

Outlook

Waiting for first LHC data, there is a compelling case for vigorously pursuing a technology able to offer e⁺e[→] collisions at, and beyond, 1 TeV with high luminosity;

CLIC offers unmatched energy range from $\overline{0.5}$ TeV up to $\overline{3}$ TeV making it an extremely appealing option for accessing the energy scale of LHC and beyond with e⁺e[−] collisions;

Physics potential at $1 - 3$ TeV appears very rich, preserving the signature e⁺e[−] features of cleanliness and accuracy represents a challenge, which needs a combined effort from physics benchmarking, detector R&D, machine parameter optimisation;

Optimal balance between very high precision at high energy and high precision at very high energy can be assessed only with first LHC results at hand. For now enough to do tackling the issues above.