

An Introduction to Parallelism, Concurrency and Acceleration (1)

CERN Academic Training – Jan 2016

Andrzej Nowak

Outline

Day 1: Concurrency and Parallelism

Day 2:
Acceleration

A blessing and a curse

Image: IBM

Image: LLNL

Image: CERN

Image: Top500

2000+

Image: AMD/LR

Base theory

Scalability

"Readiness for enlargement"

Concurrency and Parallelism

- Concurrency interleaved execution
- Parallelism parallel execution and concurrency

Flynn's taxonomy (1)

- SISD Single Instruction, Single Data
 - Classical Von Neumann's model
- SIMD Single Instruction, Multiple Data
 - A GPU

Flynn's taxonomy (2)

- MISD Multiple Instruction, Single Data
 - Redundant systems, pipeline systems (disputable)
- MIMD Multiple Instruction, Multiple Data
 - Distributed systems

Zooming in on a modern CPU

Amdahl's Law The Law of Strong Scaling

- Parallelized portion vs. the expected speedup
 - P parallelized %
 - S the speedup of that part

$$Speedup = \frac{1}{(1-P) + \frac{P}{S}}$$

Amdahl's Law The Law of Strong Scaling

Gustafson's Law The Law of Weak Scaling

Observation: we can often grow the parallel portion

$$Speedup = a(n) + N(1-a(n))$$

Strong vs. Weak scaling

- A: "Warm body" waiting in front of the computer: problem size is constant
 - Strong scaling
 - Best modeled with Amdahl's law
- B: Want to get the most done in a certain amount of time: compute time is constant
 - Weak scaling
 - Best modeled with Gustafson's law

SPEEDUP vs. THROUGHPUT

Speedup vs. Throughput

Gustafson's Law

Consequences

Practice

A thousand questions

- Which hardware? How many cores? Where?
- Which software? Will it scale?
- How to share data? How to communicate?
- Which OS?
- Which libraries? Are they thread-safe? Will they generate contention? Which API?
- How to express parallelism? Which programming language?
- Established standards or novel trinkets?
- How do I pay for the power?

Algorithms and structures Parallel vs. Sequential

- Simple example: add N numbers
 - Sequential: N operations
 - Parallel: log N operations
- Structures
 - Private or shared
 - Maps, arrays, copy and write algorithms
 - Exchangers
 - Pools, arenas

Expressing parallelism

Parallelism primitives

- Threads
- Mutexes
 - Standard
 - Spinlocks
 - Recursive
 - Timed
 - Hierarchical
- Semaphores, barriers...

It's not all unicorns and rainbows

Parallel patterns According to McCool, Robinson, Reinders

1234

Example: Partitioning

- Divide and conquer break the input into smaller pieces
- Data movement is not necessarily required, it could be just a matter of the view
- Can be in N dimensions

A Pattern Language for Parallel Programming

Decomposition and mapping

Algorithm

Parallel model

Implementation technology

Hardware architecture

Decomposition and mapping

Thank you

e-mail: an@tik.services

http://tik.services

All content which is original in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.