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| A blessing and a curse
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1970s

VM, FP

Crit. regions, FFT
0S multithreading
Dep. Analysis

Amdahl's Law
Concurrency Theory

tlk- Parallelism, Concurrency and Acceleration (1/2)

Fork and join
SIMD
Programmable IC
Pipelines

Flynn's T., XBARS
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| 1980s &

» Image: C. L. Seitz, ACM
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» Image: C. L. Seitz, ACM
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2000+

AN

, AMD is Proud to bring PC gamers
. with a Single GPU that consumes

of power

Image: AMD/LR
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Scalability

“Readiness for enlargement”
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Concurrency and Parallelism

« Concurrency — interleaved execution

» Parallelism — parallel execution and concurrency

TASK 1 TASK 2

CONCURRENCY

PARALLELISM

tl = Parallelism, Concurrency and Acceleration (1/2) 19-Jan-16



Flynn’s taxonomy (1)

« SISD = Single Instruction, Single Data
— Classical Von Neumann's model

« SIMD - Single Instruction, Multiple Data

— A GPU
SISD Instruction Pool SIMD Instruction Pool
» PU |+
© ©
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Flynn’s taxonomy (2)

* MISD — Multiple Instruction, Single Data
— Redundant systems, pipeline systems (disputable)

 MIMD — Multiple Instruction, Multiple Data
— Distributed systems

MISD Instruction Pool MIMD Instruction Pool

—|PU|+ |PU|
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Zooming in on a modern CPU

SOCKETS CORES THREADS
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Amdahls Law

The Law of Strong Scaling

» Parallelized portion vs. the expected speedup
— P —parallelized %
— S — the speedup of that part

1
P
1-P)+—
(1=-P)+

Speedup =

tlk- Parallelism, Concurrency and Acceleration (1/2)

19-Jan-16



Amdahls Law

The Law of Strong Scaling

Amdahl's Law ——Speedup
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Gustafson’s Law
The Law of Weak Scaling

* (Observation: we can often grow the parallel portion

Speedup=a(n)+ N(@d—a(n))
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Strong vs. Weak scaling

« A "Warm body” waitingin ¢ B: Want to get the most

front of the computer: done in a certain amount of
problem size Is constant time: compute time is
— Strong scaling constant
— Best modeled with Amdahl's — Weak scaling
law — Best modeled with

Gustafson’s law

SPEEDUP vs. THROUGHPUT
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Speedup vs. Throughput
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Gustafson’'s Law

Consequences
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A thousand questions

* Which hardware” How many cores? Where?
* Which software? Will it scale?

* How to share data? How to communicate?

* Which 057

* Which libraries? Are they thread-safe? Will they
generate contention? Which API?

* How to express parallelism? Which programming
language”

e Established standards or novel trinkets?
* How do | pay for the power?”
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orithms and structures

Par lel vs. Sequential

Simple example: add N numbers
— Sequential: N operations
— Parallel: log N operations

Structures

— Private or shared

— Maps, arrays, copy and write algorithms
— Exchangers

— Pools, arenas
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| Expressing parallelism

! 4 \ N\
Parallelism
]
\_ I Wy,
| |
\ N\ ! 4 \ N\
Explicit Implicit
.
Wy, \_ | Wy,
| |
! 4 \ N\ \
In software In hardware
]
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Parallelism primitives

 [hreads

* Mutexes
— Standarad
— Spinlocks
— Recursive
— Timed
— Hierarchical

e Semaphores, barriers...
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It’s not all unicorns and rainbows
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Parallel patterns

According to McCool, Robinson, Reinders

Superscalar sequence Ma Geometric decomposition Gather Reduction
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Example: Partitioning

* Divide and conquer —
break the input into
smaller pieces

* Data movement Is not
necessarily required, it
could be just a matter
of the view

e Can be in N dimensions
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Applications
s

Structural Pattemns

Pipe-and-filter Model-view controller
Agent and Repository lterative refinement
Process Control Map reduce

Event based, implicit Layered systems
invocation Arbitrary Static Task Graph
Puppeteer

A Pattern Language for Parallel
Programming

Algorithm strateqy Patterns

Task Parallelism Data Parallelism
Recursive splitting Pipeline

Implementation Strateqy Pattems

SPMD ForklJoin Loop Par.
Strict data par Actors BSP
Masteriworker Task Queue
Graph partitioning

| program structure

Parallel execution Pattems Task Grabh
MIMD Thread Pool ask srap

. data flow
SIMD Speculation digital Circuits

| Advancing “program counters”

e

Computational Pattems

Graph Algorithms
Dynamic Programming
Dense Linear Algebra
Sparse Linear Algebra
Unstructured Grids
Structured Grids

Graphical models
Finite state machines

Backtrack Branch and
Bound

N-Body methods
Circuits
Spectral Methods

Meonte Carlo

Discrete Event

Speculation

Geometric Decomposition

Shared Queue
Shared Hash Table

Msg. Pass
Collective comm.
Mutual exclusion

Distributed Array
Shared Data

Data structure

Pt-2-pt sync
coll sync.
Trans. Mem.




| Decomposition and mapping

Parallel model

Implementation technology
Hardware architecture
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| Decomposition and mapping

Threading

Sockets Cores HW threads

Data parallelism

Vectors [Pipelining) (ILP)
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