An Introduction to Parallelism,
Concurrency and Acceleration (1)

CERN Academic Training — Jan 2016

Andrze] Nowak

http://tik.services



http://tik.services/

technology
nnovation
Knowledge




Outline

Day 1:

Concurrency and
Parallelism

3oth Threads/Tasks with Hyper-Threading Technology

Day 2:
Acceleration

]
tlk- Parallelism, Concurrency and Acceleration (1/2)

19-Jan-16



| A blessing and a curse

tlk- Parallelism, Concurrency and Acceleration (1/2)

19-Jan-16



» Image: IBM
tlk- Parallelism, Concurrency and Acceleration (1/2) 19-Jan-16




» Image: LLNL
tlk- Parallelism, Concurrency and Acceleration (1/2) 19-Jan-16




» Image: CERN
tlk- Parallelism, Concurrency and Acceleration (1/2) 19-Jan-16




1970s

VM, FP

Crit. regions, FFT
0S multithreading
Dep. Analysis

Amdahl's Law
Concurrency Theory

tlk- Parallelism, Concurrency and Acceleration (1/2)

Fork and join
SIMD
Programmable IC
Pipelines

Flynn's T., XBARS

Image: Cray Research

19-Jan-16



| 1980s &

» Image: C. L. Seitz, ACM
tlk- Parallelism, Concurrency and Acceleration (1/2) 19-Jan-16




| 1980s

W B O FEnl
VM, FP . ~k+~ - Fork and join
Crit. regions, FFT SIMD
0S multithreading - & Programmable |C

Dep. Analysis —V— "o, Pipelines

Amdahl’s Law £ <=-Flynn's T., XBARS
Concurrency Theory ~ <*1s - - Co-processors
Autovectorization  ga.. =~ U '9pi- Intel 4004

\J g \
i@ (P

(’\\-‘

-

» Image: C. L. Seitz, ACM
tlk- Parallelism, Concurrency and Acceleration (1/2) 19-Jan-16




k- Parallelism, Concurrency and Acceleration (1/2)

Image: Top500
19-Jan-16



2000+

AN

, AMD is Proud to bring PC gamers
. with a Single GPU that consumes

of power

Image: AMD/LR



Base theory

tik.



Scalability

“Readiness for enlargement”

tlk- Parallelism, Concurrency and Acceleration (1/2)

19-Jan-16



Concurrency and Parallelism

« Concurrency — interleaved execution

» Parallelism — parallel execution and concurrency

TASK 1 TASK 2

CONCURRENCY

PARALLELISM

tl = Parallelism, Concurrency and Acceleration (1/2) 19-Jan-16



Flynn’s taxonomy (1)

« SISD = Single Instruction, Single Data
— Classical Von Neumann's model

« SIMD - Single Instruction, Multiple Data

— A GPU
SISD Instruction Pool SIMD Instruction Pool
» PU |+
© ©
o o > PU —
o o
© > PU -« ©
g 8 > PU —
> PU |«

tl = Parallelism, Concurrency and Acceleration (1/2) 19-Jan-16



Flynn’s taxonomy (2)

* MISD — Multiple Instruction, Single Data
— Redundant systems, pipeline systems (disputable)

 MIMD — Multiple Instruction, Multiple Data
— Distributed systems

MISD Instruction Pool MIMD Instruction Pool

—|PU|+ |PU|

Data Pool

|

¥

3

(=

T

-

(=

T
Data Pool

—|Pu|— =|PU|—

tl = Parallelism, Concurrency and Acceleration (1/2) 19-Jan-16



Zooming in on a modern CPU

SOCKETS CORES THREADS

N\

o@ 3

L | |
+- PORTS
L[ [ | (SUPERSCALAR)
VECTORS PIPELINING

- Image: A. Nowak / TIK
tlk- Parallelism, Concurrency and Acceleration (1/2) 19-Jan-16




Amdahls Law

The Law of Strong Scaling

» Parallelized portion vs. the expected speedup
— P —parallelized %
— S — the speedup of that part

1
P
1-P)+—
(1=-P)+

Speedup =

tlk- Parallelism, Concurrency and Acceleration (1/2)

19-Jan-16



Amdahls Law

The Law of Strong Scaling

Amdahl's Law ——Speedup

100
90 -
80 -
70 -
60 -
50 -
40 -
30 -
20 -
101 \

Om ‘ ‘ ‘ ‘ ‘ ‘ :
1 2 3 4 5 6 7 8 9 10 20 30 40 OS50 60 70 80 90

Sequential portion (%)

Max speedup (x)

tlk- Parallelism, Concurrency and Acceleration (1/2) 19-Jan-16




Gustafson’s Law
The Law of Weak Scaling

* (Observation: we can often grow the parallel portion

Speedup=a(n)+ N(@d—a(n))

tlk- Parallelism, Concurrency and Acceleration (1/2) 19-Jan-16



Strong vs. Weak scaling

« A "Warm body” waitingin ¢ B: Want to get the most

front of the computer: done in a certain amount of
problem size Is constant time: compute time is
— Strong scaling constant
— Best modeled with Amdahl's — Weak scaling
law — Best modeled with

Gustafson’s law

SPEEDUP vs. THROUGHPUT

tlk- Parallelism, Concurrency and Acceleration (1/2) 19-Jan-16



Speedup vs. Throughput

h

w
=

]
N
-
N
=
&
p—
=
S
=5

_-—
e <
I — T —

)
Processors

tlk- Parallelism, Concurrency and Acceleration (1/2)

Processors

Graphs from S. Jarp
19-Jan-16



Gustafson’'s Law

Consequences

ey
i

U ﬂ:
-

‘= 4 -
-
§ |

s
e

T e T W

0 Vo T 1 ] BT W
L N S 5 I8 LI A

s B
e e

B TR

—
Tt ol ol Ty
SRESAABGw

e e S i

tlk- Parallelism, Concurrency and Acceleration (1/2) 19-Jan-16




tik.



A thousand questions

* Which hardware” How many cores? Where?
* Which software? Will it scale?

* How to share data? How to communicate?

* Which 057

* Which libraries? Are they thread-safe? Will they
generate contention? Which API?

* How to express parallelism? Which programming
language”

e Established standards or novel trinkets?
* How do | pay for the power?”

= Parallelism, Concurrency and Acceleration (1/2) 19-Jan-16



orithms and structures

Par lel vs. Sequential

Simple example: add N numbers
— Sequential: N operations
— Parallel: log N operations

Structures

— Private or shared

— Maps, arrays, copy and write algorithms
— Exchangers

— Pools, arenas

tl = Parallelism, Concurrency and Acceleration (1/2)

19-Jan-16



| Expressing parallelism

! 4 \ N\
Parallelism
]
\_ I Wy,
| |
\ N\ ! 4 \ N\
Explicit Implicit
.
Wy, \_ | Wy,
| |
! 4 \ N\ \
In software In hardware
]

tlk- Parallelism, Concurrency and Acceleration (1/2)

19-Jan-16



Parallelism primitives

 [hreads

* Mutexes
— Standarad
— Spinlocks
— Recursive
— Timed
— Hierarchical

e Semaphores, barriers...

tlk- Parallelism, Concurrency and Acceleration (1/2)

19-Jan-16



It’s not all unicorns and rainbows

= Parallelism, Concurrency and Acceleration (1/2)

Image: Denning Institute

19-Jan-16



Parallel patterns

According to McCool, Robinson, Reinders

Superscalar sequence Ma Geometric decomposition Gather Reduction

P

00000000 0000000 2123456 7 00000000

******** 00000000 nmoqgga@u.....]
00000000 B 6 ®

00000000 00000000
00000000 Scalter

23555250 eeces

000000 O O0pe0@0 @]

00000 00000000 01234567

Speculative selection D D D‘ ‘ Recurrence
OODOD Partition
00000
> |esosolios 00000000
00000000 0000000
O0000000o 00000000

Fork-Join Pipeline D D D D D D D D

0O000DO00D
00000000
000000000 olalelo)

Pack Split

COoPo0NND POORBOO0

tlk- Parallelism, Concurrency and Acceleration (1/2) 19-Jan-16




Example: Partitioning

* Divide and conquer —
break the input into
smaller pieces

* Data movement Is not
necessarily required, it
could be just a matter
of the view

e Can be in N dimensions

= Parallelism, Concurrency and Acceleration (1/2)

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

19-Jan-16



Applications
s

Structural Pattemns

Pipe-and-filter Model-view controller
Agent and Repository lterative refinement
Process Control Map reduce

Event based, implicit Layered systems
invocation Arbitrary Static Task Graph
Puppeteer

A Pattern Language for Parallel
Programming

Algorithm strateqy Patterns

Task Parallelism Data Parallelism
Recursive splitting Pipeline

Implementation Strateqy Pattems

SPMD ForklJoin Loop Par.
Strict data par Actors BSP
Masteriworker Task Queue
Graph partitioning

| program structure

Parallel execution Pattems Task Grabh
MIMD Thread Pool ask srap

. data flow
SIMD Speculation digital Circuits

| Advancing “program counters”

e

Computational Pattems

Graph Algorithms
Dynamic Programming
Dense Linear Algebra
Sparse Linear Algebra
Unstructured Grids
Structured Grids

Graphical models
Finite state machines

Backtrack Branch and
Bound

N-Body methods
Circuits
Spectral Methods

Meonte Carlo

Discrete Event

Speculation

Geometric Decomposition

Shared Queue
Shared Hash Table

Msg. Pass
Collective comm.
Mutual exclusion

Distributed Array
Shared Data

Data structure

Pt-2-pt sync
coll sync.
Trans. Mem.




| Decomposition and mapping

Parallel model

Implementation technology
Hardware architecture

tlk- Parallelism, Concurrency and Acceleration (1/2) 19-Jan-16




| Decomposition and mapping

Threading

Sockets Cores HW threads

Data parallelism

Vectors [Pipelining) (ILP)

tlk- Parallelism, Concurrency and Acceleration (1/2) 19-Jan-16



Thank you

e-mall; an(otik.services

http://tik.services

All content which is original in this work is
licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 4.0
International License.




