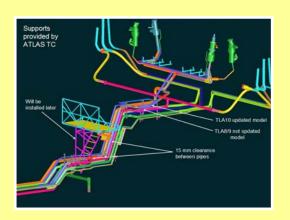
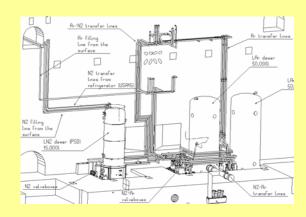


Contents

- > Responsibilities AT-ECR in "LAr calorimeter cryostats and cryogenics project"
- > Institutes collaborating in the project
- > Functional demands
- > Work done in building 180
- > Work done at Point 1
- > Work to be done at Point 1

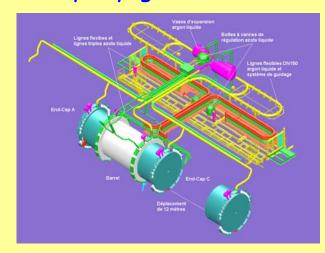

Responsibilities AT-ECR in "LAr calorimeter and cryogenics project";

- > Development, design, tendering, fabrication follow up, installation, commissioning and operation of external cryogenic installation (B. 180 and Point 1);
- > Coordination of collaboration working on complete cryogenics / cryostats project;
 - > Cryostat preparation, detector integration and cold tests B. 180;
 - > Transport to and lowering at Point1;
 - > Integration of cryogenic system at Point 1;
 - > Cool down and filling of three cryostats;
 - > Operation over ATLAS lifetime.

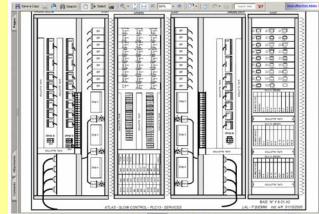


<u>Institutes</u> collaborating in the project I

CERN AT/ECR, external cryogenics:

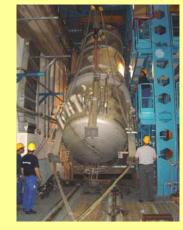


LPSC Grenoble, proximity cryogenics:


03/07/06 LEAF Johan Bremer AT/ECR

<u>Institutes</u> collaborating in the project II

LAL Orsay: interconnections and control



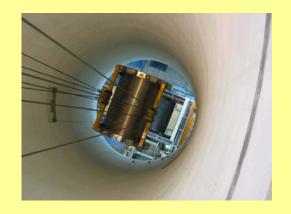
BNL: Nitrogen Refrigerator

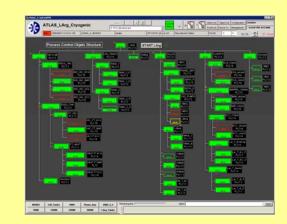
LEAF

Johan Bremer AT/ECR

03/07/06

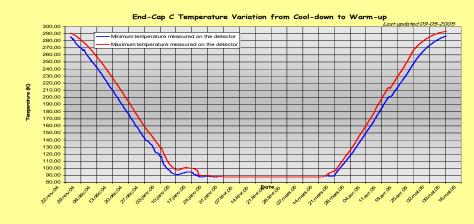
Institutes collaborating in the project III


SINTEF, Trondheim: storage tanks



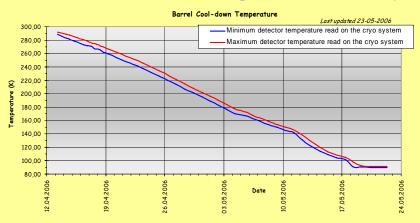
CEA Saclay: cryostats transport, functional analysis

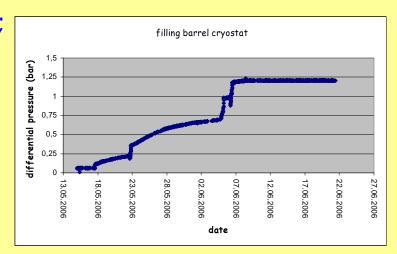
03/07/06 LEAF Johan Bremer AT/ECR


Functional demands

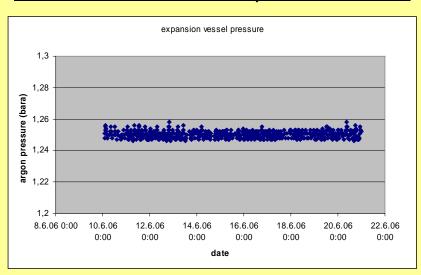
- > Seen the large quantities of argon in underground area: high safety level;
- > High stability of detector temperature;
- > Continuous operation over ATLAS lifetime;
- > Displacement of full EC cryostats over 12 meter;
- > Program in UNICOS standard;
- > Integration of material in ATLAS cavern and detector;

Work done in building 180


- > Installation of test area (hardware, electrical power, etc...);
- > Reception tests of empty cryostats (vacuum / pressure / cold);
- > Integration of detectors;
- Closure of cryostats (welded), vacuum tests / pressure tests;
- > Cool down of cryostats;
- > Operation of cryogenic system during at least 3 months of cold tests;
- Warming up of cryostats;
- Preparation for transport;
- > Transport.



Work done at Point 1


- > Installation, tests, commissioning
 - > N2 refrigerator;
 - >Transfer lines (1,5 km) and valve boxes (13);
 - > Cabling and electrical interconnections;
 - > Electrical power / cooling water / compressed air.
- > Installation, test, commissioning cryogenic installation;
- Cool-down and filling of Barrel cryostat;

Stable situation in expansion vessel

Impurity level

Can only be measured in gaseous phase (by us): < 2 ppm (= lower limit measurement)

Stable situation detector temperatures

$$Tmax = 88,6 K;$$

Detector sub-cooled between 5,8 K and 8,6 K.

Work to be done at Point 1

- > Installation and connection of transfer lines between platforms to EC cryostats;
- > Connection of signal cabling between rack-room and EC cryostats;
- > Displacement of ECs to test guiding systems for cryogenic lines and cabling;
- > Cool down and filling of EC cryostats;
- Upgrade of refrigerator program to UNITY;
- > Preparation of handover of cryogenic installation to operations (documentation, courses etc.).

