Quarkonia in Nuclear Collisions

Pengfei Zhuang Physics Department, Tsinghua University, Beijing

1) Quarkonium TMD 2) Quarkonia in Strong B Field 3) Ω_{ccc} Production in Nuclear Collisions

reference: charmonium transverse momentum distribution in high energy nuclear collisions Zebo Tang, Nu Xu, Kai Zhou, Pengfei Zhuang J.Phys. G41 (2014) 12, 124006

Workshop on QCD Thermodynamics, CCNU, July 27-31, 2015

Cold and Hot Nuclear Matter Effects

CNM: R.Vogt; Hirai-Kumano-Nagai (KHN); Eskola-Kolhinen-Salgado (EKS); EPS; …… HNM: Matsui, Satz, PBM, J.Stachel; R.Rapp; R.Thews;……

Cancellation between Suppression and Regeneration

The suppression and regeneration both increase with colliding energy but work in *an opposite way, the cancellation between them weakens the sensitivity of the yield to the colliding energy.*

Transverse momentum distribution is created in the medium and more sensitive to the medium properties !

Initial Production and Regeneration in Different P_t Regions

 $f(p) = f_{ini}(p) + f_{req}(p)$

Initially produced quarkonia: 1)Cronin effect leads to a p_t broadening, 2)Low p_t part is strongly suppressed by the hot medium, but high p_t part can *survive.*

A Dynamic Transport Approach for Quarkonium Motion

Yan,Xu,Zhuang, PRL(2006) Liu,Qu,Xu,Zhuang:, PLB(2009)

● *QGP* evolution

$$
\partial_{\mu}T^{\mu\nu} = 0, \quad \partial_{\mu}n^{\mu} = 0 \text{ + Lattice QCD equation of state}
$$

 \bullet *quarkonium motion* $(\Psi = J/\psi, \psi', \chi_c)$

$$
\partial f_{\Psi}/\partial \tau + v_{\Psi} \cdot \nabla f_{\Psi} = -\alpha_{\Psi} f_{\Psi} + \beta_{\Psi}.
$$
 hot nuclear matter effects

$$
\alpha_{\Psi}(\mathbf{p}_t, \mathbf{x}_t, \tau | \mathbf{b}) = \frac{1}{2E_{\Psi}} \int \frac{d^3 \mathbf{p}_g}{(2\pi)^3 2E_g} W_{g\Psi}^{c\bar{c}}(s) f_g(\mathbf{p}_g, \mathbf{x}_t, \cdot) \Theta(T(\mathbf{x}_t, \tau | \mathbf{b}) - T_c),
$$

\n
$$
\beta_{\Psi}(\mathbf{p}_t, \mathbf{x}_t, \tau | \mathbf{b}) = \frac{1}{2E_{\Psi}} \int \frac{d^3 \mathbf{p}_g}{(2\pi)^3 2E_g} \frac{d^3 \mathbf{p}_c}{(2\pi)^3 2E_c} \frac{d^3 \mathbf{p}_{\bar{c}}}{(2\pi)^3 2E_{\bar{c}}} W_{c\bar{c}}^{g\Psi}(s) f_c(\mathbf{p}_c, \mathbf{x}_t, \tau | \mathbf{b}) f_{\bar{c}}(\mathbf{p}_{\bar{c}}, \mathbf{x}_t, \tau | \mathbf{b})
$$

\n
$$
\times (2\pi)^4 \delta^{(4)}(p + p_g - p_c - p_{\bar{c}}) \Theta(T(\mathbf{x}_t, \tau | \mathbf{b}) - T_c),
$$

● *assuming thermalized charm quark distribution:*

● *analytic solution* $f_c(x,q) \sim \frac{1}{a^{\mu}u}$ $e^{q\mu}u_\mu/T+1$ $u_{\mu}(x)$ and $\,T(x)\,$ determined by hydrodynamics

$$
f_{\Psi}(\mathbf{p}_t, \mathbf{x}_t, \tau | \mathbf{b}) = f_{\Psi}(\mathbf{p}_t, \mathbf{x}_t - \mathbf{v}_{\Psi}(\tau - \tau_0), \tau_0 | \mathbf{b}) e^{-\int_{\tau_0}^{\tau} d\tau' \alpha \Psi(\mathbf{p}_t, \mathbf{x}_t - \mathbf{v}_{\Psi}(\tau - \tau'), \tau' | \mathbf{b})} + \int_{\tau_0}^{\tau} d\tau' \beta_{\Psi} \langle \mathbf{p}_t, \mathbf{x}_t - \mathbf{v}_{\Psi}(\tau - \tau'), \tau' | \mathbf{b} \rangle e^{-\int_{\tau'}^{\tau} d\tau'' \alpha \Psi(\mathbf{p}_t, \mathbf{x}_t - \mathbf{v}_{\Psi}(\tau - \tau''), \tau'' | \mathbf{b})}.
$$

cold nuclear matter effects

Dissociation and Regeneration Rates

$$
J/\psi(\Upsilon)+g \to Q+\overline{Q}
$$

● *gluon dissociation cross section calculated by OPE (Bhanot, Peskin,1999):*

 $\sigma(p_{\scriptscriptstyle \psi},p_{\scriptscriptstyle g})$

● *at finite temperature, we use the classical relation*

$$
\sigma(p_{\psi}, p_{g}, T) = \frac{\langle r^{2} \rangle(T)}{\langle r^{2} \rangle(0)} \sigma(p_{\psi}, p_{g}) \qquad \langle r^{2} \rangle(T)
$$

●ߓ *dissociation rate* *potential model Digal, Kaczmarek, Karsch, Satz, 2005*

● *regeneration rate is determined by the detailed balanc e*

Shadowing and Cronin Effects

nuclear shadowing factor

initial distribution with shadowing effect and Cronin effect

$$
f_{\Psi}(\mathbf{x}, \mathbf{p}, \tau_0 | \mathbf{b}) = \frac{(2\pi)^3}{E_T \tau_0} \int dz_A dz_B \rho_A(\mathbf{x}_T, z_A) \rho_B(\mathbf{x}_T, z_B)
$$

$$
\times \mathcal{R}_g(x_1, \mu_F, \mathbf{x}_T) \mathcal{R}_g(x_2, \mu_F, \mathbf{x}_T - \mathbf{b})
$$

$$
\times \overline{f}_{\Psi}^{pp}(\mathbf{x}, \mathbf{p}, z_A, z_B | \mathbf{b}), \qquad (11)
$$

7

Elliptic Flow at RHIC and LHC

Averaged Transverse Momentum at SPS, RHIC and LHC

Xu, Zhuang, NPA(2009) Zhou, Xu, Xu, Zhuang, PRC(2014)

Strong Magnetic Field in A+A Collisions

strongest magnetic field in nature but lasts ~0.1 fm/c

Gursoy, Kharzeev, and Rajagopal, 2014:

inducting medium may lead to a long life time !

Charmonia as a Probe of the B Field

Guo, Shi, Xu, Xu, Zhuang, 2015

ideal probes of the B field:

- •*created in the early stage,*
- •*sensitive to the B field,*
- •*not affected by the later hot medium.*

high ௧ *charmonium is such an ideal probe !*

Idea:

during the evolution of a $c\bar{c}$ *state* $|c\bar{c}\rangle$ *,* ݅ $i\frac{\partial}{\partial t}\left|c\bar{c}\right\rangle(\vec{x})=\widehat{H}(B(t))\left|c\bar{c}\right\rangle(\vec{x})$ *the B field leads to an anisotropic production probability* $\int \langle \Psi | c \bar{c} \rangle (\vec{x}) \mid^2$

→ *anisotropic charmonium formation !*

Time-dependent Schroedinger Equation

1)
$$
i \frac{\partial}{\partial t} \Phi(t) = \hat{H} \Phi(t)
$$
, $\hat{H} = \frac{(\vec{p}_c - q_c \vec{A}_c)^2}{2m_c} + \frac{(\vec{p}_{\bar{c}} - q_{\bar{c}} \vec{A}_{\bar{c}})^2}{2m_c} - \frac{(q_c \vec{s}_c + q_{\bar{c}} \vec{s}_{\bar{c}}) \cdot \vec{B}}{m_c} + V_{c\bar{c}}(r)$
\n $V_{c\bar{c}}(r) = -\frac{\alpha}{r} + \sigma r + \beta e^{-\gamma r} \vec{s}_c \cdot \vec{s}_{\bar{c}}$
\nparameters are determined in vacuum, see Alford, Strickland, 2013.

2) $R =$ $\frac{\vec{r}_c + \vec{r}_{\bar{c}}}{2}, \, \vec{r} = \vec{r}_c - \vec{r}_{\bar{c}}, \, \vec{P} = \vec{p}_c + \vec{p}_{\bar{c}}, \, \vec{p} = \vec{p}$ ${\vec p}_c{-}{\vec p}_{\overline c}$ ଶ *,* kinetic momentum $\vec{P}_k = \vec{P}$ -q $_c \vec{A}_c$ $-q_{\bar{c}}\vec{A}_{\bar{c}}$, conserved momentum $\vec{P}_{ps} = \vec{P} + q_{c}\vec{A}_{c} + q_{\bar{c}}\vec{A}_{\bar{c}}$,

$$
\widehat{H} = \widehat{H}_0 + \widehat{H}_B, \qquad \widehat{H}_B = -\frac{(q_c \vec{s}_c + q_{\overline{c}} \vec{s}_{\overline{c}}) \cdot \bar{B}}{m_c} - \frac{q_c}{2m_c} \left(\vec{P}_{ps} \times \vec{B} \right) \cdot \vec{r} + \frac{q^2}{4m_c} \left(\vec{B} \times \vec{r} \right)^2
$$

3) expanding Φ in terms of the charmonium states:

$$
\Phi(\vec{P}_{ps}, \vec{R}, \vec{r}, t) = \frac{1}{\sqrt{2\pi}} e^{i \left(\vec{P}_{k} \cdot \vec{R} - \frac{\vec{P}_{ps} t}{4mc} \right)} \sum_{\psi} C_{\psi} (\vec{P}_{ps}, t) e^{-iE_{\psi} t} \psi(\vec{r}),
$$

$$
\hat{H}_{0} \psi(\vec{r}) = E_{\psi} \psi(\vec{r})
$$

$$
\frac{d}{dt} C_{\psi} (\vec{P}_{ps}, t) = \sum_{\psi} e^{i \left(E_{\psi} - E_{\psi'} \right) t} C_{\psi} (\vec{P}_{ps}, t) \int d^{3} \vec{r} \psi^{*}(\vec{r}) \hat{H}_{B} \psi'(\vec{r})
$$

13the probability for the $c\,\bar{c}$ to be in the charmonium state $|\psi\rangle$ is $|{\mathcal C}_\psi(\vec{P}_{ps},t)|^2$

Initial Condition

magnetic field in heavy ion collisions:

$$
B = \begin{cases} B\vec{e}_y, & 0 < t < t_B \text{ and } \frac{x^2}{(R_A - b/2)^2} + \frac{y^2}{(b/2)^2} + \frac{\gamma^2 z^2}{(b/2)^2} < 1\\ 0, & \text{otherwise} \end{cases}
$$

$$
b = 8 fm, R_A = 6.6 fm,
$$

LHC: 25 m_{π} , 0.2 fm, 1400

initial wave function determined by $p + p$ collisions:

$$
\Phi(\vec{r}, t = 0) = (2\pi\sigma^2)^{-\frac{3}{4}} e^{-\frac{(\vec{r} - \vec{r}_0)^2}{4\sigma^2}} = \sum_{\psi} C_{\psi} \psi(\vec{r}),
$$

$$
\vec{r}_0 = r_0 (\sin\theta_0 \cos\varphi_0, \sin\theta_0 \sin\varphi_0, \cos\theta_0),
$$

 r_0 and σ are determined by the feedback from ψ' and χ_c in vacuum: $R(\chi_c) = 30\%$ and $R(\psi') = 10\%$ (*LHCb*)

Time Evolution of the Feedback from ψ' *and* χ_c

߰ᇱ *and J/*߰ *enhancement by 10% and* ߯ *suppression by 23% .*

$P_{\boldsymbol{t}}$ dependence

strong enhancement or suppression at high P_t *, due to the Lorentz force.*

- *1) anisotropic charmonium formation in the B field.*
- *2)* strong enhancement or suppression at $\varphi = 0$, but almost no *change at* $\varphi = \pi/2$ *.*

$\mathsf{Non\text{-}collective}\ v_2$ at High P_t

 $\bm{\mathsf{Non\text{-}collective}}\ v_2$ at high $\bm{\mathsf{P}_t}$, created by the B field

 $\varOmega_{\mathcal{C}\mathcal{C}\mathcal{C}}$ *He, Liu, Zhuang, PLB(2015)*

 Ω_{ccc} is the ground bound state of 3 charm quarks, *it is not yet found experimentally.*

1) Ω_{ccc} *production in a p+p collision needs at least 3 pairs of* $c\bar{c}$ *, the production cross section is small even at LHC energy. see for instance J.D.Bjorken 1986 and Y.Chen, 2011.*

2) However, coalescence among uncorrelated charm quarks in A+A collisions leads to a large production cross section, $N(\Omega_{ccc}) \sim N_c^3$

it may become most probable to discover Ω_{ccc} in A+A !

Ω_{ccc} , a Clean Signal of QGP

Current signals of QGP:

jet quenching, J/ ψ *suppression, strangeness enhancement, electromagnetic probes, …… However, they are produced in both p+p and A+A, the signal is only the quantitative difference between p+p and A+A.*

If Ω_{ccc} is observed, it is a clean signal of QGP, since it can not be *produced in p+p at the same energy.*

ߗ *, Computable Coalescence Probability*

The coalescence probability for light hadrons is usually assumed to be a Gaussing distribution, and the width is taken as the particle's radius.

However, the calculation for heavy quarks becomes theoretically solid. The Wigner function (the coalescence probability) for Ω_{ccc} *can be calculated via Schroedinger equation.*

3-body Schroedinger Equation

$$
\hat{H}\Psi(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3) = E_T\Psi(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3)
$$
\n
$$
\hat{H} = \sum_{i=1}^3 \frac{\hat{p}_i^2}{2m_c} + V(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3)
$$
\n
$$
V(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3) = \sum_{i < j} V_{cc}(\mathbf{r}_i, \mathbf{r}_j). \quad V_{cc} = V_{c\bar{c}}/2. \quad V_{c\bar{c}}(\mathbf{r}_i, \mathbf{r}_j) = -\frac{\alpha}{|\mathbf{r}_{ij}|} + \sigma|\mathbf{r}_{ij}|,
$$
\n
$$
1)\alpha, \sigma, m_c \text{ cab be determined by fitting the charmonium spectra,}
$$
\n2)coalescence happens at T_c , assuming $V(T_c) = V(0)$

 (1) \vec{r}_1 , \vec{r}_2 , \vec{r}_3 $\;\rightarrow$ $\;\vec{R}$ (baryon coordinate), \vec{r}_x , \vec{r}_y (relative coordinates) $\psi(\vec{r}_1,\vec{r}_2,\vec{r}_3) ~\rightarrow~ \phi\big(\vec{R}\big) \psi\big(\vec{r}_x,\vec{r}_y\big)$ 2) $\vec{r}_x, \vec{r}_y \rightarrow r$, $\theta_x, \phi_x, \theta_y, \phi_y, \alpha = arctg$ $\frac{r_y}{r_y}$ (hyperspherical coordinates) r_{χ}

Problem:

since $V\big(|\vec r_i - \vec r_j|\big)$ depends on the 5 angels, one can not separate the *relative motion into a radial part and an angular part.*

Hyperspherical Symmetry

E.Nielsen et al., Phys. Rep. 347, 373(2001), I.narodetskii et al., JETP Lett. 90, 232(2009)

Taking the averaged potential

$$
v(r) = \frac{8}{\pi} \int_0^{\pi/2} \sum_{i < j} V_{cc} \left(\sqrt{2}r \sin \alpha \right) \sin^2 \alpha \cos^2 \alpha d\alpha
$$

to replace $V\big(|\vec r_i - \vec r_j|\big)$, one separates the relative motion into a radius *equation*

$$
\left[\frac{1}{2m_c}\left(-\frac{d^2}{dr^2} - \frac{5}{r}\frac{d}{dr}\right) + v(r)\right]\varphi(r) = E\varphi(r)
$$

and an angular equation.

Wave Function

Wigner Function

$$
W(\mathbf{r}, \mathbf{p}) = \int d^6 \mathbf{y} e^{-i\mathbf{p} \cdot \mathbf{y}} \psi \left(\mathbf{r} + \frac{\mathbf{y}}{2}\right) \psi^* \left(\mathbf{r} - \frac{\mathbf{y}}{2}\right)
$$

$$
\mathcal{P}(r, p) = \frac{1}{24\pi} r^5 p^5 \int_0^\pi W(r, p, \theta) \sin^4 \theta d\theta
$$

Coalescence

$$
\frac{dN}{d^3\mathbf{P}} = C \int \frac{d^3\mathbf{R}}{(2\pi)^3} \int \frac{d^3\mathbf{r}_x d^3\mathbf{r}_y d^3\mathbf{p}_x d^3\mathbf{p}_y}{(2\pi)^6} f(r_1, p_1) f(r_2, p_2) f(r_3, p_3) W(\mathbf{r}_x, \mathbf{r}_y, \mathbf{p}_x, \mathbf{p}_y)
$$

\n- 1) Coalescence happens on the hadronization hypersurface
$$
\Sigma
$$
 determined by $T(R_{\mu}) = T_c$
\n

$$
\frac{dN}{d^2\mathbf{P}_T d\eta} = C \int_{\Sigma} \frac{P^{\mu} d\sigma_{\mu}(R)}{(2\pi)^3} \int \frac{d^4 r_x d^4 r_y d^4 p_x d^4 p_y}{(2\pi)^6} f(r_1, p_1) f(r_2, p_2) f(r_3, p_3) V(\mathbf{r}_x, \mathbf{r}_y, \mathbf{p}_x, \mathbf{p}_y)
$$

\n
$$
d\sigma_0 = \left(R_T \frac{\partial \tau}{\partial \eta} \sinh \eta + R_T \tau \cosh \eta \right) dR_T d\phi d\eta,
$$

\n
$$
d\sigma_1 = \left(\tau \frac{\partial \tau}{\partial \phi} \sin \phi - R_T \tau \frac{\partial \tau}{\partial R_T} \cos \phi \right) dR_T d\phi d\eta,
$$

\n
$$
d\sigma_2 = -\left(\tau \frac{\partial \tau}{\partial \phi} \cos \phi + R_T \tau \frac{\partial \tau}{\partial R_T} \sin \phi \right) dR_T d\phi d\eta
$$

\n
$$
d\sigma_3 = -\left(R_T \frac{\partial \tau}{\partial \eta} \cosh \eta + R_T \tau \sinh \eta \right) dR_T d\phi d\eta.
$$

\n2) **Charm quark (thermal) distribution** $f(\vec{r}, \vec{p}) = \frac{1}{e^{p\mu \mu \mu / T} + 1}$

3) Local T and u_{μ} *are from* $\partial_{\mu} T^{\mu\nu} = 0$ *+ QCD EoS*

Numerical Results at LHC

Effective cross section per binary collision:

$$
\sigma_{\Omega} \equiv \frac{N_{\Omega}}{N_{coll}\Delta\eta} \sigma_{pp} \quad \sigma_{pp} = 62 \ mb \rightarrow \quad \sigma_{\Omega} = 9 \ nb
$$

1) In comparison with p+p (Bjorken 1986, Chen 2011): $\sigma_{\Omega} = 0.06$ -0.13 nb at 7 TeV *0.1-0.2 nb at 14 TeV*

2) In comparison with J / ψ *and Y in A+A:* $\sigma_{1/10} = 1900 \text{ nb}$ and $\sigma_{\gamma} = 3.4 \text{ nb}$

Conclusions

1) Quarkonium TMD, especially $v_{\mathrm 2}$ *and* $r_{\mathrm 1}$ $\tilde{\mathcal{L}}_{AA}=\frac{\langle p_{t}^{2}\rangle_{AA}}{\langle p_{t}^{2}\rangle_{pp}}$, can distinguish hot mediums *between SPS, RHIC and LHC*:*from pt broadening to pt suppression.*

2) It is most probable to discover Ω_{ccc} *in heavy ion collisions at LHC, and the discovery is a clean signature of the quark-gluon plasma formation.*

3) The anisotropic charmonium production at high pt is a signal of the initially created magnetic field.

We need more precise study on quarkonia at RHIC and LHC!

I thank my colleagues and students !

Baoyi Chen Xingyu Guo Hang He Yunpeng Liu Shuzhe Shi

Nu Xu Zhe Xu Li Yan Kai Zhou Xianglei Zhu

decay modes

Decay through weak interaction, for instance nonleptonic cascade decay mode (Chen 2011):

$$
\begin{array}{ccc}\n\Omega_{ccc}^{++}\rightarrow&\Omega_{ccs}^{+}&+\pi^{+} \\
&\downarrow&&\\ \n\Omega_{css}^{0}&+\pi^{+} \\
&\downarrow&&\\ \n\Omega_{sss}^{-}&+\pi^{+}\n\end{array}
$$

semileptonic decay mode (Bjorken, 1986): $\Omega_{ccc}^{++} \rightarrow \Omega_{sss}^- + 3\mu^+ + 3v_\mu.$

Both model categories reproduce the data ... $d\sigma_{c\bar{c}}/dy$ values rather different: midrapidity: Stat. Hadr.: 0.3-0.4 mb Transport: 0.5-0.75 mb (TAMU), 0.65-0.8 mb (Tsinghua)

J/ψ vs. p_T - data and models

13

from Andronic, QM2014

A.Andronic@GSL.de

(re) generation models describe the LHC data well ... with a healthy fraction of J/ψ newly produced

ALICE, arXiv:1311.0214 (& prelim., Book, HF 4)

de

Zhou et al., arXiv:1401.5845 the transport model reproduce the data very well ... requires thermalized charm quarks ("sanity check")

Heavy Quark Distribution

assuming thermalized charm quark distribution:

$$
f_c(x,q) \sim \frac{1}{e^{q^{\mu}u_{\mu}/T}+1}
$$

 $u_{\mu}(x)$ and $\,T(x)\,$ determined by hydrodynamics

equation for charm quark density

$$
\partial_{\mu}(f_{c}u^{\mu}) = R_{gain} - R_{loss}
$$

$$
f_c(\tau_0) = \frac{T_A(\vec{x})T_B(\vec{x} - \vec{b})\cosh(\eta)}{\tau_0} \frac{d\sigma_{pp}^{c\bar{c}}}{d\eta}
$$

 $R_{gain} = R_{gg \to c\bar{c}} + R_{q\bar{q} \to c\bar{c}}$ (*Nason, Dawson, Ellis, 1988*)

 R_{loss} : determined by detailed balance with R_{gain}

Zhou, Chen, Zhuang, 2015

