

Quarkonium production in p-Pb collisions with ALICE at the LHC

Michael Winn

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

28.08.2015 Wuhan 2015

Universität Heidelberg

J/ψ suppression via colour screening suggested as a probe of deconfinement in heavy-ion collisions in 1986 T. Matsui and H. Satz, Phys.Lett.B 178 (1986) link: DOI: 10.1016/0370-2693(86)91404-8

LHC energies: production from deconfined charm quarks as consequence of deconfinement in AA collisions

- J/ψ production at phase boundary
P. Braun-Munzinger and J. Stachel,
Phys.Lett.B, 490 (2000) link: arXiv:0007059

- J/ ψ production and destruction during lifetime of deconfined phase

R. L. Thews, M. Schroeder, J. Rafelski, Phys.Rev.C, 63 (2001) link:arXiv:0007323

P. Braun-Munzinger and J.Stachel, Nature 448 (2007)

For interpretation: pA needed as ingredient for non-QGP nuclear effects

Wuhan, 28.08.2014

Predicted modifications in p-Pb at the LHC

Wuhan, 28.08.2014

Quarkonium capabilities in p-Pb at the LHC

 J/ψ acceptance in first pp collision publications

- → similar reach of experiments in p-Pb collisions
- → all 4 experiments participated in p-Pb data taking

Graphics: courtesy of A. Maire

- ATLAS and CMS: J/ ψ , ψ (2S) at high- p_{τ} , Y(1,2S,(3S)) down to 0 p_{τ}

- ALICE: J/ ψ down to 0 p_{T}

Forward rapidity

- LHCb and ALICE: J/ ψ , ψ (2S), Y(1S), Y(2S) down to 0 p_{τ}

Quarkonium with ALICE at the LHC

Quarkonium with ALICE at the LHC

Quarkonium with ALICE at the LHC

Inclusive J/ ψ down to $p_{\tau} = 0$ GeV/c at midrapidity

2013 p-Pb run

Dimuons: dedicated trigger

 L_{int} = 5.0 nb⁻¹ (forward)

 L_{int} = 5.8 nb⁻¹ (backward) Same bunch pile-up probability: 1-3 % link: arXiv:1308.6726 JHEP 1402 (2014) 073

link: arXiv:1503.07179 JHEP 1506 (2015) 055

link: arXiv:1506.08808

2013 p-Pb run

Dielectrons at midrapidity: Minimum Bias

 $L_{int} = 52 \ \mu b^{-1}$

Average same bunch pile-up probability: 2.3 per mille

link: arXiv:1503.07179 JHEP 1506 (2015) 055

link: arXiv:1506.08808

$R_{pPb}^{J/\psi}$ as a function of rapidity

μ⁺μ⁻: link: arXiv:1308.6726 JHEP 1402 (2014) 073

e⁺e⁻ link: arXiv:1503.07179 JHEP 1506 (2015) 055

Forward and backward rapidity results consistent with LHCb: link: arXiv:1308.6729 JHEP 1402 (2014) 072

ALI-DER-93181

- significant suppression at forward rapidity
- mid-rapidity result compatible with forward rapidity result
- backward rapidity result consistent with no suppression

Wuhan, 28.08.2014

$R_{pPb}^{J/\psi}$ as a function of rapidity

μ⁺μ⁻: link: arXiv:1308.6726 JHEP 1402 (2014) 073

e⁺e⁻ link: arXiv:1503.07179 JHEP 1506 (2015) 055

Forward and backward rapidity results consistent with LHCb: link: arXiv:1308.6729 JHEP 1402 (2014) 072

ALI-DER-93177

- EPS09 shadowing combined with CEM/CSM consistent with data
- energy loss models with/without shadowing consistent with data
- early CGC-based CEM inconsistent with data

Wuhan, 28.08.2014

Backward rapidity: $R_{pPb}^{J/\psi}(p_{T})$

link: arXiv:1503.07179 JHEP 1506 (2015) 055

Systematic uncertainties:

- coloured boxes: uncorrelated
- filled areas: (part.) correlated

- EPS09 shadowing combined with CEM consistent with data
- roughly consistent with coherent energy loss models within uncertainties

Wuhan, 28.08.2014

J/ψ Midrapidity: R

p Pb e⁺ e⁻ link: arXiv:1503.07179 JHEP 1506 (2015) 055 Systematic uncertainties:

- coloured boxes: uncorrelated
- filled areas: correlated

- EPS09 shadowing with CEM production consistent with data
- coherent energy loss models consistent with data
- early CGC-based model by Fujii et al. consistent with data in this rapidity range

Wuhan, 28.08.2014

Forward rapidity: $R_{pPb}^{J/\psi}(p_{T})$

link: arXiv:1503.07179 JHEP 1506 (2015) 055

Systematic uncertainties:

- coloured boxes: uncorrelated
- filled areas: (part.) correlated

- rise as a function of transverse momentum
- EPS09 shadowing with CEM consistent with data
- tension with energy loss models at low $p_{\rm T}$ with/without shadowing
- underpredicted by the early CGC-based model by Fujii et al.

Wuhan, 28.08.2014

Forward rapidity: $R_{pPb}^{J/\psi}(p_{T})$

link: arXiv:1503.07772

- NRQCD CGC-model by Yan-Qing Ma et al. consistent with data

Wuhan, 28.08.2014

$R_{pPb}^{J/\psi}(p_T)$ versus $R_{PbPb}^{J/\psi}(p_T)$: forward & backward

 $2 \rightarrow 1$ kinematics probes \approx the same Bjorken-x of Pb in p-Pb and Pb-Pb

- Assuming factorization of nuclear effects (e.g. only nPDF mod.) 'extrapolation' also approximate for $2 \rightarrow 2$ kinematics within CEM at finite $p_{\tau} \rightarrow$ see talk by R. Vogt at Quarkonium 2014: link
 - $\rightarrow R_{pPb}^{forw} \times R_{pPb}^{backw} (R_{pPb}^{2})$: can be used as Pb-Pb expectation

low- p_{\perp} in Pb-Pb: enhancement \rightarrow hint of regeneration

suppression at high- $p_{\perp} \rightarrow QGP$ induced

Wuhan, 28.08.2014

Michael Winn, Universität Heidelberg

link: arXiv:1503.07179 JHEP 1506 (2015) 055

$R_{pPb}^{J/\psi}(p_T)$ versus $R_{PbPb}^{J/\psi}(p_T)$: midrapidity

link: arXiv:1503.07179 JHEP 1506 (2015) 055

 $2 \rightarrow 1$ kinematics probes \approx the same Bjorken-x of Pb in p-Pb and Pb-Pb

- Assuming factorization of nuclear effects (e.g. only nPDF mod.) 'extrapolation' also approximate for $2 \rightarrow 2$ kinematics within CEM at finite $p_{\tau} \rightarrow$ see talk by R. Vogt at Quarkonium 2014: link

$$\rightarrow R_{pPb}^{forw} \times R_{pPb}^{backw} (R_{pPb}^{2})$$
: can be used as Pb-Pb expectation

low- p_{τ} in Pb-Pb: enhancement \rightarrow hint of regeneration suppression at high- $p_{\tau} \rightarrow QGP$ induced

Wuhan, 28.08.2014

ψ (2S) in p-Pb: more suppressed than J/ ψ

link: arXiv:1405.3796 JHEP 1412 (2014) 073

- Decrease of $\psi(2S)/J/\psi$ -ratio from pp to p-Pb
- Hint of rapidity dependence
- Similar effect seen by PHENIX in d-Au collisions at midrapidity at $\sqrt{s_{_{NN}}}$ = 200 GeV Phys. Rev. Lett. 111, 202301 (2013), arXiv:1305.5516

Shadowing & E-loss models: identical treatment of $\psi(2S) \& J/\psi \rightarrow$ no explanation for this behaviour with these mechanisms

Wuhan, 28.08.2014

ψ (2S) in p-Pb: more suppressed than J/ ψ

link: arXiv:1405.3796 JHEP 1412 (2014) 073

Backward rapidity Forward rapidity

- Decrease of $\psi(2S)/J/\psi$ -ratio from pp to p-Pb
- no dependence on p_{T} within uncertainties

Shadowing & E-loss models: identical treatment of $\psi(2S) \& J/\psi \rightarrow$ no explanation for this behaviour with these mechanisms

Wuhan, 28.08.2014

ψ (2S) in p-Pb: more suppressed than J/ ψ

link: arXiv:1411.0549

- comover interactions proposed by E. G. Ferreiro as explanation of additional $\psi(2S)$ suppression

Wuhan, 28.08.2014

Bottomonium

Extraction of Y(1S), Y(2S) possible in p-Pb data sample with muon arm at forward and backward rapidity

Y(2S)/Y(1S) ratio consistent with pp within sizeable uncertainties

CMS reports stronger suppression of Y(2S) at midrapidity

Significiance of Y(3S) in combined fit below 3 σ

Wuhan, 28.08.2014

Bottomonium

- strong antishadowing in EPS09 disfavoured by data

ALICE 'centrality' determination in p-Pb

p-Pb vs Pb-Pb:

- looser correlation between N_{part} and impact parameter
- looser correlation between N_{part} and multiplicity
 - \rightarrow fluctuations much more important
 - \rightarrow biases associated with experimental estimator choice important

ALICE 'centrality' determination in p-Pb

ALICE approach as consequence of observations in data:

→ slice events in zero degree neutron energy deposit on the Pb remnant side, build T_{pA} such that:

a) midrapidity $dN/d\eta$ scales with N_{part}

b) Pb-side $dN/d\eta$ scales with N_{part} target

c) high-p_T yield at midrapidity scales with $dN/d\eta N_{coll}$

Underlying assumption: zero degree energy insensitive to dynamical biases

'centrality' dependent nuclear modification factor called Q_{pPb} instead of R_{pA} due to weaker correlation between estimator and geometry than in AA, and due to potentially unaccounted biases

$$Q_{\text{pPb}}^{\text{mult.}} = \frac{N_{\text{J/\psi in pPb in ZN perc.}}}{<\mathcal{T}_{\text{pPb}} > \cdot \sigma_{\text{J/\psi in pp}}}$$

Wuhan, 28.08.2014

Michael Winn, Universität Heidelberg

All values within deviations of at most 10 % → uncertainty estimtae

Q_{pA} : 'centrality' dependence of J/ ψ

- data favors a strong shadowing within the CEM EPS09 model
- the coherent energy loss compatible with the data at forward and midrapidity, but shows a different trend at backward rapidity
- the comover model compatible at forward and midrapidity: disfavored at backward rapidity

Q_{pA} : 'centrality' dependence of J/ ψ

link: arXiv:1506.08808

- reasonable agreement with CEM with EPS09 shadowing considering all uncertainties
- coherent energy loss model overestimating steepness of the data at highest event activity at forward rapidity

Wuhan, 28.08.2014

p_{T} -broadening of J/ ψ as function of centrality

link: arXiv:1506.08808

Backward rapidity Forward rapidity

- model by Kang et al. studying the impact of multiple scattering during the whole interaction reproduces well the data
- energy loss models reproduces well the observable at backward rapidity, but is steeper at forward rapidity

Wuhan, 28.08.2014

Q_{pA} : event activity dependence of J/ ψ & ψ (2S)

Backward rapidity (Pb-going):

- Q_{pA} of $\psi(2S)$ decreasing with increasing event activity in contrast to J/ψ

ψ(2S): Prelim. for QM'14 Link: Nucl.Phys. A931 (2014) 628-632

Q_{pA} : event activity dependence of J/ ψ & ψ (2S)

- J/ ψ and $\psi(2S)$ exhibits stronger suppression with increasing event activity
- no dependence of additional $\psi(2S)$ suppression w.r.t. J/ ψ observed within uncertainties

IS, 05.12.2014

Multiplicity dependence of J/ψ : pp vs p-Pb

Analysis in pp collisions:

 J/ψ yield at forward rapidity and midrapidity as function of multiplicity at midrapidity

- reaching rare event classes

highest multiplicity class: 3.3 % of selected MB trigger events

- behaviour often interpreted in terms of multi-parton interactions
- \rightarrow measure in p–Pb!

Wuhan, 28.08.2014

Multiplicity dependence of J/ψ : pp vs p-Pb

- Clear increase of relative J/ ψ yield in p-Pb at forw. & backw. rapidity
- Linear increase for backward rapidity (Pb-going) very similar to pp
- Onset of saturation at forward rapidity (p-going)

Wuhan, 28.08.2014

Michael Winn, Universität Heidelberg

Prelim. for QM'14 Link: Nucl.Phys. A931 (2014) 612-616 31

Multiplicity dependence of $< p_T^{J/\psi}$

Increase of relative $\langle p_T^{J/\Psi} \rangle$ as function of multiplicity in $|\eta_{lab}| < 0.5$

- saturation of $\langle p_{\tau}^{J/\Psi} \rangle$ at about 1.5 $\langle dN_{ch}/d\eta \rangle$
- same behaviour at forward and backward rapidity within uncertainties

Wuhan, 28.08.2014

Summary

• $R_{pPb}^{J/\Psi}$ as a function of rapidity consistent with

- EPS09 gluon shadowing combined with CEM/CSM
- coherent energy loss with/without shadowing some discrepancies for $R_{\text{DPb}}^{J/\Psi}(p_{T})$ at low p_{T}

• $R_{pPb}^{J/\psi}$ versus $R_{PbPb}^{J/\psi}$

- low p_{τ} : enhancement in Pb-Pb w.r.t. simple 'extrapolation' from p-Pb
- high p_{τ} : stronger suppression in Pb-Pb with respect to p-Pb

Summary

- 'Centrality' dependence Q_{pPb} : suppression at forward rapidity & close to unity at backward rapidity
- Multiplicity dependence of relative J/ψ yields similar to pp
- $< p_{\perp} >$ increasing with multiplicity and saturating at forward & backward rapidity
- $R_{pPb}^{\Psi^{(2S)}}$ at backward/forward rapidity: stronger suppression than J/ Ψ

significant nuclear modification of Y(1S): not fully described by shadowing or coherent energy loss model

Conclusion

 J/ψ and Y(1S) qualitatively matching expectations from shadowing and/or coherent energy loss

Pattern of observed suppression strengthen evidence of an additional contribution at low p_{τ} in Pb-Pb

ψ(2S) result not explained with shadowing/coh. energy loss

→ comover model as one possible scenario

Outlook

RUN1 p-Pb Results to come:

- final $\psi(2S)$ 'centrality' dependence
- multiplicity dependence of J/ψ production at midrapidity
 - \rightarrow final result to be published soon with final muon result
- non-prompt/prompt J/ ψ separation at midrapidity

Back-up: correlation between used estimators

Comparison between the used multiplicity estimator and the variable used for the slicing in event activity bins for $Q_{_{\rm DPb}}$

Wuhan, 28.08.2014

Back-up: 2013 p-Pb Run

Dimuons: dedicated trigger L_{int} =5.0 nb⁻¹ (forward) L_{int} =5.8 nb⁻¹ (backward)

Dielectrons: Minimum Bias

 $L_{int} = 52 \ \mu b^{-1}$

extensive usage of TPC-PID

Wuhan, 28.08.2014

Back-up: Acceptance x efficiency for muon channel

Wuhan, 28.08.2014

Back-up: pp-reference at √s = 5.02 TeV

Dimuons:

- interpolation of ALICE results in pp at $\sqrt{s} = 2.76$ TeV and $\sqrt{s} = 7.0$ TeV in bins of y, p_{T}
- extrapolation in *y*, where necessary *y*-ranges only partially overlapping between pp and p-Pb cross-checked with approach chosen for the dielectrons

Dielectrons:

- $d\sigma/dy$ via interpolation of results (PHENIX, CDF, ALICE) at $y \approx 0$: BR(J/ $\psi \rightarrow ee$) x $d\sigma/dy_{pp,y\approx0}$ ($\sqrt{s} = 5.02 \text{ TeV}$) = 368 ± 91 nb effect of rapidity shift negligible w.r.t. total uncertainty

(qn) 1400

) 1200 90/0p

1000

800

- *p*_T-dependence from phenomenological scaling inspired by arXiv:1103.2394

p-Pb $\sqrt{s_{NN}}$ = 5.02 TeV, inclusive J/ $\psi \rightarrow \mu^+\mu^-$, 0<p_<15 GeV/c

 L_{int} (-4.46<*y*<-2.96)= 5.8 nb⁻¹, L_{int} (2.03<*y*<3.53)= 5.0 nb⁻¹

Wuhan, 28.08.2014

Back-up: R_{pA} : ψ (2S) and J/ ψ model comparison

Shadowing & E-loss models: identical treatment of $\psi(2S)$ & J/ ψ

 \rightarrow no explanation for $\psi(2S)$ behaviour

Wuhan, 28.08.2014

Back-up: R_{pA} : ψ (2S) and J/ ψ model comparison

Shadowing & E-loss models: identical treatment of $\psi(2S) \& J/\psi$

 \rightarrow no explanation for $\psi(2S)$ behaviour

Wuhan, 28.08.2014

link: arXiv:1308.6726 JHEP 1402 (2014) 073

Wuhan, 28.08.2014

Back-up: Uncertainties: $R_{pA}^{J/\psi}$ at forward/backward rapidity

t	integrated R ^{J/Ψ} forward (backward)	y-differential R ^{J/ψ} _{pA}	
Statistical uncertainty	0.7 % (0.8 %)		
Systematic uncertainties:	Source	$\sigma^{{ m J}/\psi}_{ m pPb}, R_{ m pPb}$	$\sigma^{{ m J}/\psi}_{ m Pbp}, R_{ m Pbp}$
	Uncorrelated		
	Tracking efficiency	4	6
	Trigger efficiency	2.8	3.2
	Signal extraction	1.3 (1.5 - 3.4)	1.2 (1.6 - 3.8)
	MC input	1.5 (1.1 – 3)	1.5 (0.9 - 4.2)
link: arXiv:1308.6726	Matching efficiency	1	1
JHEP 1402 (2014) 073	F_{\perp}	1	1
	$\sigma_{ m pp}^{ m J/\psi}$	4.3 (3.1 - 6.0)	4.6 (3.1 - 13.4)
	Partially correlated		
	$\sigma^{ m MB}_{ m pPb}$	3.2	3
	$\sigma_{ m pp}^{{ m J}/\psi}$	3.7 (2.7 - 9.2)	3.1 (1.2 - 8.3)
	Correlated		
	B.R.		1
	$\langle T_{ m pPb} angle$	3	.6
	$\sigma^{{ m J}/\psi}_{ m pp}$	5	5.5

Wuhan, 28.08.2014

Michael Winn, Universität Heidelberg

Back-up: Uncertainties: $R_{pA}^{\psi(2S)}$ **at forward/backward rapidity**

integrated $R_{pA}^{\psi(2S)}$ forward (backward)

Statistical uncertainty

12 % (15 %)

Systematic		B.R. $\sigma_{\rm pPb}^{\psi(2S)}$	B.R.· $\sigma_{\mathrm{Pbp}}^{\psi(\mathrm{2S})}$
	Uncorrelated		
uncertainties:	Tracking efficiency	4	6
	Trigger efficiency	2.8(2-3.5)	3.2(2-3.5)
	Signal extraction	9.5 (8 - 11.9)	9.3 (8.6 - 12.7)
	MC input	1.8 (1.5 - 1.5)	2.5(1.5-1.7)
	Matching efficiency	1	1
link: arXiv:1308.6726	N_{MB}	1	1
JHEP 1402 (2014) 073	Partially correlated		
	$\sigma^{ m MB}_{ m pPb}$	3.2	3

Back-up: systematic uncertainties

Source	$\sigma^{{ m J}/\psi}_{ m pPb},R_{ m pPb}$	$\sigma^{{ m J}/\psi}_{ m pPb},R_{ m pPb}$	$\sigma_{ m Pbp}^{{ m J}/\psi},R_{ m Pbp}$
	-1.37< $y_{\rm cms}$ <0.43	$2.03 < y_{\rm cms} < 3.53$	$-4.46 < y_{\rm cms} < -2.96$
Uncorrelated			
Tracking efficiency $(\mu^+\mu^-)$	2 12	4	6
Trigger efficiency $(\mu^+\mu^-)$	2. 	2.7 - 4.1	2.7 - 4.1
Matching efficiency $(\mu^+\mu^-)$	10 	1	1
Reconstruction efficiency $({\rm e^+e^-})$	4		
Signal extraction	5.5 - 12.6	2 - 2.5	2 - 3.6
MC input	0.3 - 1.5	0.1 - 0.4	0.1 - 1.4
$\sigma_{ m pp}^{{ m J}/\psi}$	4.8 - 15.7	5.2 - 9.2	5.2 - 9.2
Partially correlated			
$\sigma_{ m pp}^{{ m J}/\psi}$ (corr. vs y and $p_{ m T}$)	-	2.8 - 5.9	2 - 5.6
Correlated			
B.R. $(J/\psi \rightarrow l^+ l^-)$	1	1	1
$\mathcal{L}_{int}(corr. vs. p_{T}, uncorr. vs. y)$	3.3	3.4	3.1
$\mathcal{L}_{\text{int}}(\text{corr. vs. } y \text{ and } p_{\text{T}})$	1.6	1.6	1.6
$\sigma_{ m pp}^{{ m J}/\psi}$	16.6	5.2	5.2

link: arXiv:1503.07179 JHEP 1506 (2015) 055

Wuhan, 28.08.2014

Back-up: systematic uncertainties

Source of uncertainty	$-4.46 < y_{\rm cms} < -2.96$	$2.03 < y_{\rm cms} < 3.53$	$-1.37 < y_{\rm cms} < 0.43$
Source of uncertainty	cent. (cent. and $p_{\rm T}$)	cent. (cent. and $p_{\rm T}$)	cent.
Signal extraction	2.0 - 2.4% (2.8 - 7.1%)	2.0 - 2.1% (2.1 - 5.3%)	3.7 - 7.4%
$\mu^+\mu^-$ tracking (I)	6%	4%	-
$\mu^+\mu^-$ trigger (I)	3.4% (2.7 – 3.6%)	3% (2.7 - 3.6%)	-
$\mu^+\mu^-$ matching (I)	1%	1%	-
e^+e^- reconstruction (I)	-	-	4%
MC input (I)	1.5% (0.1 - 1.4%)	1.5% (0.1 - 0.4%)	3%
MC input	-	-	1.4%
$F_{2\mu/MB}$ (III)	1 - 3.5%	1 - 2.7%	-
Uncertainties related to cross section only			
$\sigma_{\rm MB}$ (I,II,III)	1.6%	1.6%	1.6%
$\sigma_{\rm MB}$ (I,III)	3%	3.3%	3.3%
BR (I, II, III)	0.5%	0.5%	0.5%
Uncertainties related to Q_{pPb} only			
$\langle T_{\rm pPb}^{\rm mult} \rangle$ (I,II,III)	3.4%	3.4%	3.4%
$\langle T_{\rm pPb}^{\rm mult} \rangle$ (II,III)	1.9 - 7.2%	1.9 - 7.2%	1.9 - 5.6%
$\sigma_{\rm pp}$ (I)	5.3% (8.1-13%)	5.7% (8.2-11%)	17%
$\sigma_{\rm pp}$ (I, II, III)	5.5%	5.5%	-

link: arXiv:1506.08808

Back-up: systematic uncertainties

Source	Backward rapidity	Forward rapidity
Signal extraction: $\Upsilon(1S)$	5%–6% (II)	4%-6% (II)
Signal extraction: $\Upsilon(2S)$	12% (II)	12% (II)
Input MC parameterization: $\Upsilon(1S)$	2%–5% (II)	4%-6% (II)
Input MC parameterization: $\Upsilon(2S)$	5% (II)	5% (II)
Tracking efficiency	6% (II)	4% (II)
Trigger efficiency	2% (II)	2% (II)
Matching efficiency	1% (II)	1% (II)
$\sigma_{pp}^{\Upsilon(1S)}$ (interpolation) \mathscr{L} (correlated) \mathscr{L} (uncorrelated)	11%–13% (II) 1.6% (I) 3.1% (II)	7%–12% (II) 1.6% (I) 3.4% (II)

link: arXiv:1410.2234 PLB 740 (2015) 105-117

Back-up: Uncertainties: relative yield and $< p_T >$ of J/ψ vs midrapidity multiplicity

Only uncorrelated uncertainties remain in relative quantities to first order

Systematic uncertainties	forward rapidity	backward rapidity
Signal method N _{bin}	1.5-3.3 %	1.5-4.6 %
Signal extraction $N_{bin}^{J/\psi}/N^{J/\psi}$	1.5-3.3 %	1.5-4.6 %
$< p_{T} > MC$ input	2 %	2 %
Extraction $< p_T > < p_T > int$	0.1-0.4 %	0.1-1.2 %
F	1-7 %	1-4%
<dn<sub>ch/dη></dn<sub>	3.9 %	3.9 %
Pile-up	1-4 %	1-2 %

Prelim. for QM'14 Link: Nucl.Phys. A931 (2014) 628-632

Back-up: $d^2\sigma/dydp_{T pA}^{J/\psi}$

$d\sigma/dy_{pA}^{J/\psi}$: comparison with LHCb

$R_{pA}^{J/\psi}$: comparison with LHCb

$d^2\sigma/dydp_{T pA}^{J/\psi}$: comparison with LHCb

