

Thermal production of charms and charmonia in quark-gluon plasma

Zhengyu Chen Tsinghua University, Beijing

Kai Zhou, Carsten Greiner (Frankfurt University)

Pengfei Zhuang (Tsinghua University)

Workshop on QCD Thermodynamics in High Energy Collisions CCNU, Wuhan, Jul 29, 2015

Outline

- Introduction
- Thermal production of charms
- Thermal production of charmonia
- Numerical results
- Summary

Introduction

Little Bang

Matsui and Satz: PLB178, 416(1986): J/Psi suppression as a probe of QGP in HIC

Electrons are usually used to probe the electro-magnetic structure of nucleons

Hot Nuclear Matter effects:

1)suppression in QGP and HG (Masui, Satz et al.) 2)regeneration in QGP and HG (PBM, Thews, R.Rapp et al.)

Cold Nuclear Matter effects:

1)nuclear absorption (J.Huefner, A.Capella et al.)

- 2)Cronin effect (J.W.Cronin, J.Huefner et al.)
- 3)shadowing effect (A.H.Mueller, M.Gyulassy, R.Vogt, Zhengyu Chen E.Ferreiro et al.)

4

Initial production initial production controls high pt region

Regeneration

important at low pt due to heavy quark energy loss

Nuclear modification factor:

characterize the differences of J/Psi production between A+A and simple superposition of p+p collisions

$$R_{AA} = \frac{N_{J/\psi}^{AA}}{N_{coll}N_{J/\psi}^{pp}} \sim \frac{"QCD_{medium}"}{"QCD_{vacuum}"}$$

- (= 1 No medium effect
 - < 1 Suppression
 - > 1 Enhancement

Transverse momentum modification factor: Sensitive to the hot nuclear matter effects but affected weakly by the cold nuclear matter effects.

@SPS:

Almost all the finally observed charmonia are from primordially produced one

@RHIC:

Regeneration only plays a partial role

@LHC:

Regeneration becomes equally important in forward rapidity, and even dominant in mid-rapidity

Future Circular Collider 39TeV!

Nucl.Phys.A834,249C(2010)

All the heavy quarks are initially produced! $\partial_{\mu}N^{\mu} = 0$

How about the thermal charm production and its contribution to charmonia ?

thermal production can appreciably enhance the yield of charm quarks

Zhengyu Chen 7

B. Zhang, C. Co, W. Liu, PRC77, 024901(2008)

Thermal production of charms

Charm production processes

Leading Order:

 $q + q \rightarrow c + c \quad g + g \rightarrow c + c$

Next-to-leading Order: $q + \overline{q} \rightarrow c + \overline{c} + g \qquad g + g \rightarrow c + \overline{c} + g$

rate equation

$$\partial_{\mu} N^{\mu} = R_{gain} - R_{loss}$$

$$R_{gain} = \frac{dN_{reaction}}{d^4 x} = \frac{1}{\upsilon} \int \frac{d^3 p_1}{(2\pi)^3 2E_1} \frac{d^3 p_2}{(2\pi)^3 2E_2} 4F_{12}\sigma_{12}f_1f_2$$

 σ_{12} charm pair production cross section(P. Nason et al. 1988)

R_{loss} determined by detailed balance

+ Equation Of State (ideal gas or strongly coupled matter from lattice)

The final charged multiplicity is used to determine the initial entropy density as input for hydrodynamics

charm number evolution

@ 2.76TeV thermal charm production is cancelled by shadowing.

@ 5.5 TeV thermal charm production comparable with shadowing.

@ 39 TeV thermal charm production overcomes shadowing.

Thermal production enhances J/Psi regeneration, but shadowing effect suppress J/Psi regeneration, the final result is controlled by the competition of the two.

Thermal production of charmonia

• transport approach

L. Yan et al. (2006), Y. Liu et al. (2009), K. Zhou et al. (2014)

• quarkonium transport equations

$$\partial_{\tau} f_{\Psi} + \mathbf{V}_{\Psi} \cdot \nabla f_{\Psi} = -\alpha_{\Psi} f_{\Psi} + \beta_{\Psi}$$
$$(\Psi = J/\Psi, \chi_c, \Psi')$$

$$\begin{aligned} \alpha_{\Psi}(\mathbf{p}_{t},\mathbf{x}_{t},\tau|\mathbf{b}) &= \frac{1}{2E_{\Psi}} \int \frac{d^{3}\mathbf{p}_{g}}{(2\pi)^{3}2E_{g}} W_{g\Psi}^{c\bar{c}}(s) f_{g}(\mathbf{p}_{g},\mathbf{x}_{t},\tau) \Theta\left(T(\mathbf{x}_{t},\tau|\mathbf{b})-T_{c}\right), \\ \beta_{\Psi}(\mathbf{p}_{t},\mathbf{x}_{t},\tau|\mathbf{b}) &= \frac{1}{2E_{\Psi}} \int \frac{d^{3}\mathbf{p}_{g}}{(2\pi)^{3}2E_{g}} \frac{d^{3}\mathbf{p}_{c}}{(2\pi)^{3}2E_{c}} \frac{d^{3}\mathbf{p}_{\bar{c}}}{(2\pi)^{3}2E_{\bar{c}}} W_{c\bar{c}}^{g\Psi}(s) f_{c}(\mathbf{p}_{c},\mathbf{x}_{t},\tau|\mathbf{b}) f_{\bar{c}}(\mathbf{p}_{\bar{c}},\mathbf{x}_{t},\tau|\mathbf{b}) \\ \times (2\pi)^{4} \delta^{(4)}(p+p_{g}-p_{c}-p_{\bar{c}}) \Theta\left(T\left(\mathbf{x}_{t},\tau|\mathbf{b}\right)-T_{c}\right), \\ Including thermal \\ charm production \end{aligned}$$

Analytic solution

$$f_{\psi}(\vec{p}, \vec{x}, \tau) = f_{\psi}(\vec{p}, \vec{x}_{0}, \tau_{0})e^{-\int_{\tau_{0}}^{\tau} d\tau_{1}\alpha_{\psi}(\vec{p}, \vec{x}_{1}, \tau_{1})} + \int_{\tau_{0}}^{\tau} d\tau_{1}\beta_{\psi}(\vec{p}, \vec{x}_{1}, \tau_{1})e^{-\int_{\tau_{1}}^{\tau} d\tau_{2}\alpha_{\psi}(\vec{p}, \vec{x}_{2}, \tau_{2})}$$

For the in-vacuum dissociation cross section, one can use results from the OPE method with a perturbative Coulomb interaction (Bhanot, Peskin, 1999):

$$\sigma(p_{\psi},p_{g})$$

When going to high temperature medium, we estimate the temperature effect on gluon dissociation by taking the geometrical relation

$$\sigma(p_{\psi}, p_{g}, T) \Box \frac{\langle r^{2} \rangle(T)}{\langle r^{2} \rangle(0)} \sigma(p_{\psi}, p_{g})$$

 $\langle r^2 \rangle$ (T) calculate using potential model with lattice simulated heavy quark potential at finite temperature Zhengyu Chen

12

Numerical results

@2.76TeV

Thermal production increase $R_{AA} \ 0.48 \rightarrow 0.55$ (with shadowing); Thermal production increase $R_{AA} \ 0.48 \rightarrow 0.77$ (without shadowing).

@5.5TeV

With thermal production, R_{AA} shows a slightly increasing trend; Without thermal production, R_{AA} appears a flat structure.

@39TeV

Without thermal production, R_{AA} is around 0.2 in most of centralities. Considering thermal production, R_{AA} can reach to 0.85 (1.25 if without shadowing) in most central collisions.

- valley structure due to the thermal production Zhengyu Chen 13

Summary

The thermal charm production can dramatically enhance the charm quark pairs yield at extremely high energies such as collisions at FCC.

At FCC, RAA presents a clearly valley structure due to the competition between the strong suppression and strong regeneration.

At FCC, differential RAA as a function of pT can exceed 1 with thermal charm production.

Thank You!

Primary rate equation

$$\partial_{\mu}N^{\mu} = \partial_{\mu}\left(n_{c\bar{c}}^{LR}u^{\mu}\right) = R_{gain} - R_{loss}$$

.

• Writing
$$n_{c\bar{c}} = \gamma n_{c\bar{c}}^{LR}$$
, it turns to be
 $\partial_{\mu}N^{\mu} = \partial_{\mu} \left(n_{c\bar{c}}^{LR} u^{\mu} \right) = R_{gain} - R_{loss}$
 $\eta = (1/2) \ln \left((t+z)/(t-z) \right), \tau = \sqrt{t^2 - z^2}$
 $\frac{1}{\cosh \eta} \partial_{r} n_{c\bar{c}} + \nabla_T \cdot \left(n_{c\bar{c}} \cdot \mathbf{V}_T \right) + \frac{1}{\tau \cosh \eta} n_{c\bar{c}} = R_{gain} - R_{loss}$
• Setting $n_{c\bar{c}} = \rho_T/\tau$, $\rho_T (\tau, X_T)$ being charm pair number density, it can be expressed as
 $\partial_{\tau}\rho_T + \nabla_T \cdot \left(\rho_T \cdot \mathbf{V}_T \right) = \tau \left(R_{gain} - R_{loss} \right)$
• Simplified rate equation

$$\partial_{\tau} \rho_T + \nabla_T \cdot \left(\rho_T \cdot \mathbf{V}_T \right) = \tau R_{gain} - \frac{\rho_T}{\gamma^2 \tau} r_{loss}$$

Zhengyu Chen 17

$$\frac{dN_{ch}}{d\eta} = -232.7 - 189.6\sqrt{S_{NN}} + 598.2\left(\sqrt{S_{NN}}\right)^{0.217}$$
$$\frac{ds\left(\tau_0, \mathbf{X}_T\right)}{d\eta} = \kappa \frac{\rho_{sr}\left(\mathbf{X}_T\right)}{\rho_{sr}\left(0\right)} \frac{dN_{ch}}{d\eta}$$

$$\rho_{sr}\left(\mathbf{X}_{T}\right) = \frac{1-\alpha}{2}n_{part}\left(\mathbf{X}_{T}\right) + \alpha n_{coll}\left(\mathbf{X}_{T}\right)$$