

Upgrade of the ALICE Inner Tracking System

Yaping Wang (Central China Normal University)

Workshop on QCD Thermodynamics

in High-Energy Collisions July 27 - 31, 2015 College of Physical Science and Technology Central China Normal University (CCNU), Wuhan, China

1

- ALICE current set-up and Inner Tracking System (ITS)
- ALICE upgrade motivation and objectives
- ITS upgrade layout and main components
- Detector simulated performance (examples)
- CCNU Plan on the ALICE ITS Upgrade

The Current ALICE Detectors

ALICE

ALICE (A Large Ion Collider Experiment) is designed to study the physics of strongly interacting matter, and in particular the properties of the Quark-Gluon Plasma (QGP), using proton-proton, proton-nucleus and nucleus-nucleus collisions at the CERN LHC.

The Current ALICE Inner Tracking System

The Current ITS:

6 concentric barrels, 3 different technologies

- 2 layers of silicon pixel (SPD)
- 2 layers of silicon drift (SDD)
- 2 layers of silicon strips (SSD)

The Current ITS – Secondary Vertex Determination

Example: D⁰ meson

Open charm

Particle	Decay Channel	с τ (μm)
D ⁰	K ⁻ π ⁺ (3.8%)	123
D+	K ⁻ π ⁺ π ⁺ (9.5%)	312
D _s ⁺	K ⁺ K ⁻ π ⁺ (5.2%)	150
Λ_{c}^{\star}	p K⁻π⁺ (5.0%)	60

Analysis based on decay topology and invariant mass technique

 μ m at p_T = 1 GeV/c

Characterize of QGP properties require:

- \diamond precision measurements of rare probes
- ♦ over a large kinematic range (from high to very low transverse momenta)
- \diamond as a function of multi-differential observables: centrality, reaction plane, ...

Precision measurements of spectra, correlations and flow of heavy flavour hadrons and quarkonia at low transverse momenta (not possible to trigger!!)

ALICE Upgrade Strategy

These require statistics and precision measurements:

Target for upgrade programme (Run3 + Run4)

♦ Pb-Pb recorded luminosity

Run2)

♦ pp@5.5 TeV recorded luminosity

 \geq 10 nb⁻¹ \rightarrow 8×10¹⁰ events \geq 6 pb⁻¹ \rightarrow 1.4×10¹¹ events

1. Upgrade detectors, readout systems and online systems

Read out all Pb-Pb interactions at a maximum rate of 50 kHz (i.e. L=6×10²⁷ cm⁻²s⁻¹), with a minimum bias trigger (at present 500 Hz)
 Gain a factor of 100 in statistics over originally approved programme (Run1 +

2. Significant improvement of vertexing and tracking capabilities at low p_{T}

♦ New Inner tracking system (ITS, Muon Forward Tracker)

It targets LHC 2nd Long shutdown (2018/19)

The ITS Upgrade Design Objectives

- 1. Improve impact parameter resolution by a factor of ~3
- Get closer to IP (position of first layer): 39mm =>22mm
- Reduce x/X₀ /layer: ~1.14% \Rightarrow ~ 0.3% (for inner layers)
- Reduce pixel size: currently 50μm x 425μm 🜩 28μm x 28μm
- 2. Improve tracking efficiency and $p_{\scriptscriptstyle T}$ resolution at low $p_{\scriptscriptstyle T}$
- Increase granularity:
 - 6 layers ➡ 7 layers
 - silicon drift and strips ➡ pixels
- 3. Fast readout
- readout Pb-Pb interactions at > 50 kHz and pp interactions at $\sim 2 \times 10^5$ Hz (currently limited at 1kHz with full ITS and ~ 3 kHz without silicon drift)
- 4. Fast insertion/removal for yearly maintenance
- possibility to replace non functioning detector modules during yearly shutdown

Install detector during LHCC LS2 (2018-19)

J. Phys. G(41) 087002

The New ITS Layout

*MAPS: Monolithic Active Pixel Sensor

The MAPS Technology Application in STAR

<u>PIXEL</u>

- 2 layers of thin MAPS, 18.4x18.4 μm pixel pitch
- Integration time ~ 180 μs
- Provide ultimate pointing resolution that allows for direct topological identification of charm

Track inward from TPC with graded resolution:

The New ITS Layout – Inner Barrel

<Radius> (mm): 23, 31, 39 Nr. Of staves: 12, 16, 20 Nr. Of chips/layer: 108, 144, 180 Power density: < 100 mW/cm²

Length in z (mm): 270 Nr. Of chips/stave: 9 Material thickness: ~0.3% X₀ Throughput (@100kHz): < 80 Mb/s × cm⁻²

The New ITS Layout – Outer Barrel

<Radius> (mm): 194, 247, 353, 405 Nr. Of staves: 24, 30, 42, 48 Nr. Of chips/layer: 6048 (ML), 17740 (OL) Power density: < 100 mW/cm² Length in z (mm): 900 (ML), 1500 (OL) Nr. Of modules/stave: 4 (ML), 7(OL) Material thickness: ~1% X_0 Throughput (@100kHz): < 3 Mb/s × cm⁻²

The New ITS CMOS Pixel Sensor

- ALPIDE Full Scale prototype (MAPS):
- ♦ Dimensions: 15 mm × 30 mm
- \diamond About 0.5M pixels: 28 μ m × 28 μ m
- \diamond 40 nW front-end (4.7 mW/cm²)
- $\diamond~$ Integration time: ~4 μs
- \diamond Peaking time (defines time res.): <2 μ s

The New ITS CMOS Pixel Sensor

★ Measurements at PS: 5-7 GeV π^- (refer to 50 μ m thick chips, 10× load expected in 6 years)

* J. Phys. G(41) 087002

Interconnection of pixel chip on flexible printed circuit:

- Some redundancy in the quantity of modules to be produced is required, specifically 120% for the IB, 20% for the OB, resulting in a total 2136 modules; more specifically:
 - IB: <u>n. 106 "9-chips" modules (954 chips to be soldered)</u>
 - OB: <u>n. 2030 "14-chips" modules (28420 chips to be soldered)</u>
- <u>Considering ~ 80 solder pads/chip → ~ 2.4 M interconnections</u>
- A chip placement accuracy of $\pm 5 \mu m$ is required.

Interconnection of pixel chip to flex PCB

Laser Soldering:

- Flux-less soldering of 200 µm diameter Sn/ Ag(96.5/3.5) balls (227 °C melting T) in vacuum (≤10⁻¹ mbar)
- ♦ IR diode laser, 976 nm, 25 W, 50 mm focal length, 250 µm beam spot size
- Laser power modulated by pyrometer,
 programmable T profile ensures precise
 limitation of heating
- Soldering mask (in Macor[®] or Rubalit [®])
 used to press FPC on chip and guide
 soldering balls inside FPC vias
- ♦ Solder provides electrical and mechanical connection → no glue

Laser Pads:

- In order to solder the chip on the flexible printed circuit (FPC), the chip Al pads need to be covered with Ni-Au (wet-able surface)
- Plating is done on wafers level using electroless Ni-Au plating, prior to thinning and dicing

Ni-Au plated pads

Performance of the New ITS (MC simulation)

$D^0 \rightarrow k^-\pi^+$ secondary vertex position resolution:

- Pb+Pb events in the 0-10% centrality class at 5.5 TeV generated with HIJING, and enriched heavy flavor signals generated with PYTHIA 6.
- With the upgraded ITS, the resolution improves by a factor of about 3 for the x (and y) coordinates and about 6 for z.

Charm nuclear modification factors:

* J. Phys. G(41) 087002

Beauty nuclear modification factors:

Charm and beauty v_2 :

- The v_2 result at RHIC points to a partonic degree of freedom in the initial state.
- The expected precision of measurement of v_2 with the upgraded ITS. The systematic uncertainties can be expected to be rather small.

* J. Phys. G(41) 087002

Enhancement of Λ_c/D^0 ratio:

- The production of charm and beauty baryons has also a particular interest to assess the thermalization and the mechanisms of hadronization of heavy flavors in the medium.
- For light flavor and strange baryons, an enhancement was observed at intermediate p_{T} at RHIC and LHC.

• Assumed the statistical uncertainties for the D^0 measurements and for the Λ_c measurements in pp are negligible with respect to those for the Λ_c measurements in Pb+Pb.

Physics Reach of the New ITS

	Current, $0.1 \mathrm{nb}^{-1}$		Upgrade, $10 \mathrm{nb^{-1}}$		
Observable	$p_{\mathrm{T}}^{\mathrm{min}}$ (GeV/c)	statistical uncertainty	$p_{ m T}^{ m min} \ m (GeV/c)$	statistical uncertainty	
Heavy Flavour					
D meson R_{AA}	1	10%	0	0.3%	
$D_s meson R_{AA}$	4	15%	< 2	3%	
D meson from B R_{AA}	3	30%	2	1%	
J/ψ from B R_{AA}	1.5	15% (p _T -int.)	1	5%	
B ⁺ yield	not a	accessible	2	10%	
$\Lambda_{ m c} R_{ m AA}$	not a	accessible	2	15%	
$\Lambda_{\rm c}/{\rm D}^0$ ratio	not a	accessible	2	15%	
$\Lambda_{ m b}$ yield	not a	accessible	7	20%	
D meson $v_2 (v_2 = 0.2)$	1	10%	0	0.2%	
$D_{\rm s} {\rm meson} v_2 (v_2 = 0.2)$	not a	accessible	< 2	8%	
D from B v_2 ($v_2 = 0.05$)	$_2 = 0.05$) not accessible		2	8%	
J/ψ from B $v_2 \ (v_2 = 0.05)$	not a	accessible	1	60%	
$\Lambda_{\rm c} \ v_2 \ (v_2 = 0.15)$	not a	accessible	3	20%	
Dielectrons					
Temperature (intermediate mass)	not accessible			10%	
Elliptic flow $(v_2 = 0.1)$ [4]	not accessible			10%	
Low-mass spectral function [4]	not a	accessible	0.3	20%	
Hypernuclei					
$^{3}_{\Lambda}$ H yield	2	18%	2	1.7%	

* J. Phys. G(41) 087002

25

Wuhan Plan on the ALICE ITS Upgrade

- The amount of modules and the time available require a distributed production over 6 sites (Bari/Italy, CERN, Liverpool/UK, Pusan/Korea, Strasbourg/France, Wuhan/China).
- Usage of same procedure and system is necessary to ensure homogenous production.

Wuhan efforts on ITS upgrade:

- CCNU plans to import a module assembly machine, and involves one outer layer module assembly (~ 400 modules production at Wuhan).
- Efforts on vision control software development for the module assembly machine.
- Efforts on the Pixel chip ALPIDE design:
 ☑ Pixel analog front end revision and optimization in ALPIDE chip design
 - New matrix readout architecture in ALPIDE chip design

Project Timeline and Collaboration

ALICE ITS Collaboration:

CERN, China (Wuhan), Check Republic (Prague), France (Grenoble, Strasbourg), Italy (Aless., Bari, Cagliari, Catania, Frascati, Padova, Roma, Trieste, Torino), Indonesia (LIPI), Korea (Pusan, Inha, Yonsei), Netherlands (Nikhef, Utrecht), Pakistan (CIIT-Islamabad), Russia (St. Petersburg), Slovakia (Kosice), Thailand (Suranaree, SLRI, TMEC), UK (Daresbury, Liverpool, RAL), Ukraine (Kharkov), USA (Austin, Berkeley)

and flow (HF-muon, multi-strangeness and pi0) HF Physics!

Spares

Pixel chip general requirements:

Parameter	Inner Barrel	Outer Barrel	
Silicon thickness	50 μm		
Spatial resolution	5 μm	10 µm	
chip dimensions	15 mm x 30 mm		
Power density	< 300 mW/cm ²	< 100 mW/cm ²	
Event time resolution	< 30 μs		
Detection efficiency	> 99%		
Fake hit rate	< 10 ⁻⁵ per readout frame		
TID radiation hardness ^(*)	2700 krad	100 krad	
NIEL radiation hardness ^(*)	1.7x10 ¹³ 1MeV n _{eq} /cm ²	10 ¹² 1MeV n _{eq} / cm ²	

* 10x radiation load integrated over approved programme (~ 6 years of operation)

The New ITS CMOS Pixel Sensor

Monolithic pixel chip using TowerJazz

- 0.18 µm CMOS imaging process:
 - Chip size: 15 mm × 30 mm \diamond
 - Pixel pitch: ~ 30 μm \diamond
 - \diamond Spatial resolution: ~ 5 μ m
 - \Rightarrow Power density: < 100 mW/cm²
 - \diamond Architectures: MISTRAL, ALPIDE

Deep p-well allows truly CMOS circuit inside pixel

The New ITS CMOS Pixel Sensor

Hybrid Pixel Detector

N. Wermes (Univ. of Bonn)

Monolithic Pixel Detector

N. Wermes (Univ. of Bonn)

- Sensor based on silicon junction detectors produced in a planar process
- High resistivity wafers (few kWcm) with diameters of 4" – 6"
- Specialized producers (~10 world wide)
- Readout Chip: ASIC CMOS sub-micron technology
- Interconnect technology based on flip-chip bonding

- Charge generation volume integrated into the ASIC
- Exist in many different flavours: CCDs, CMOS MAPS, HV/HR CMOS, DEPFET, SOI, ...
- This talk will cover only CMOS Monolithic Active Pixel Sensors (CMOS MAPS) = <u>CMOS Pixel Sensors</u> (<u>CPS</u>)

ALICE Upgrade Strategy

- The upgrade plans entails building
 - New, high-resolution, high-rate ITS
 - Upgrade of TPC with replacement of MWPCs with

GEMs and new pipelined readout electronics

- Upgrade of readout electronics of: TRD, TOF, PHOS and Muon Spectrometer
- Upgrade of the forward trigger detectors and ZDC
- Upgrade of the online systems (DAQ & HLT)
- Upgrade of the offline reconstruction framework
- New 5-plane silicon telescope in front of the hadron absorber covering the acceptance of the muon Spectrometer
- It targets 2018/19 (LHC 2nd Long Shutdown)

02

CMOS Pixel Sensor using TowerJazz 0.18 μ m CMOS Imaging Process

Tower Jazz 0.18 µm CMOS

- feature size 180 nm
- metal layers
 6
- ➔ Suited for high-density, low-power
- Gate oxide 3nm
- ➔ Circuit rad-tolerant
- High-resistivity (> $1k\Omega$ cm) p-type epitaxial layer (20μ m 40μ m thick) on p-type substrate
- Small n-well diode (2-3 μ m diameter), ~100 times smaller than pixel => low capacitance
- Application of (moderate) reverse bias voltage to substrate can be used to increase depletion zone around NWELL collection diode
- Quadruple well process: deep PWELL shields NWELL of PMOS transistors, allowing for full CMOS circuitry within active area

D meson fragmentation function in jets:

- Projection for the measurement of the fragmentation function of D⁰ mesons within charm quark induced jets in central Pb+Pb collisions (0-10% centrality class).
- Provide insight into the energy loss of high-momentum leading charm quarks.
- Improved reconstruction of various heavy flavor decay channels will largely enhance the performance for tagging jets that contain heavy flavors.

* J. Phys. G(41) 087002