

Collectivity in High-Energy Nuclear Collisions at RHIC and LHC

Workshop on QCD Thermodynamics

in High-Energy Collisions July 27 - 31, 2015 College of Physical Science and Technology Central China Normal University (CCNU), Wuhan, China

Shusu Shi

Central China Normal University

Outline

Introduction

- Multi-strange hadron and φ meson flow
- Comparison to hydro
- Number of constitute quark scaling
- Energy dependence

Summary

Elliptic Flow (v₂)

Partonic Collectivity

SQM2015, arxiv:1507.05247

- > Mass ordering when $p_T < 2 \text{ GeV/c}$
- Baryon/meson splitting when 2 < p_T < 5 GeV/c High precision data prove that Ω follows the baryon/meson splitting. *First time!*

Partonic Collectivity

Significant flow signals for multi-strange hadrons

JHEP06(2015)190

Mass Ordering for ϕ -mesons

> Ideal hydro + hadron cascade

Small hadron cross section + hadronic rescattering effect on v_2 Mass ϕ > mass p $\rightarrow v_2(\phi) > v_2(p)$

Break mass ordering for ϕ meson

 $v_2(\phi)$ versus $v_2(p)$

> Model study indicates with increasing hadronic cascade time (more hadronic re-scattering), the $v_2(\phi)/v_2(p)$ ratio increases

> The ratio $v_2(\phi)/v_2(p)$ Is $4.35 \pm 0.98 \pm ^{0.66}_{0.45}$ at $p_T = 0.52 \text{ GeV/c in } 0.30\%$ ->

Possibly due to the effect of late hadronic interactions on the proton v_2

 $v_2(\phi)$ versus $v_2(p)$

Resonance Workshop at Catania JHEP06(2015)190

- > There is an indication that the ϕ meson v₂ is larger than the proton v₂ for the lowest p_T bin.
- Currently the uncertainties are too large

Comparison to Hydro

Resonance Workshop at Catania JHEP06(2015)190

Hydro calculations fail to reproduce the baryon v₂ data -> indicates the contributions from the hadronic phase are not understood yet

NCQ Scaling - RHIC

A AND A AND

arxiv:1507.05247

Deviation from the K^0_S fit line in the range $(m_T-m_0)/n_q>0.8~{\rm GeV}/c^2$ for 0-30% and 30-80% centrality.

NCQ scaling holds within 10%

	Deviation	
Particle	0-30% centrality	30-80% centrality
ϕ	2.7±2.6(stat.)±1.8(sys.)%	1.2±1.3(stat.)±0.6(sys.)%
Λ	4.3±0.8(stat.)±0.2(sys.)%	1.5±0.7(stat.)±0.2(sys.)%
Ξ	11.3±2.3(stat.)±1.4(sys.)%	8.5±2.0(stat.)±0.5(sys.)%
Ω	10.1±8.4(stat.)±5.3(sys.)%	7.0±6.0(stat.)±1.5(sys.)%

NCQ Scaling - LHC

The deviation from the NCQ scaling at the level of +/-20%

Better NCQ scaling at RHIC ->

indicates coalescence is the dominant hadronization mechanism at RHIC in the intermediate p_T range

NCQ Scaling - pPb

SQM2015, PLB 7 42 (2015) 200

> NCQ scaling observed for K_S^0 and Λv_2

Partonic collectivity at small colliding system?

Energy Dependence

v₂{4} results

- Three centrality bins
- Consistent v₂(p_T)
 from 7.7 GeV to
 2.76 TeV for p_T > 2
 GeV/c

> p_T< 2GeV/c</p>

The v₂ values rise with increasing collision energy

->

Large collectivity? Particle composition?

STAR: Phys. Rev. C 86, 054908 (2012) ALICE: Phys. Rev. Lett. 105, 252302 (2010)

Energy Dependence

> Similar $v_2(p_T)$ shape for PID

A more realistic theoretical approach required

such as three-dimensional viscous hydro + hadronic phase with a consistent EOS at nonzero baryon chemical potential

Particle vs. Anti-particle

Significant difference of baryon and antibaryon v₂ observed

New data from 14.5 GeV fit the energy dependency curve

φ Meson v₂

Sizable ϕ meson v₂: comparable to 19.6 GeV

High statistics and more energies below 20 GeV needed!

Baryon/Meson Separation

A splitting between baryons and mesons is observed at all energies except 7.7 GeV and all centralities.

At 7.7 GeV we are limited by the statistics number of events.

Baryon/Meson Separation

The splitting between baryons and mesons is observed significant for all energies above 14.5 GeV and also at 14.5 GeV for 40%–80%.

For these energies below 11.5 GeV, we are limited by the number of events.

Summary

- Multi-strange hadron v₂ -> *Partonic collectivity*
- Comparison to hydro -> Contributions from the

hadronic phase are not understood

- NCQ scaling-> Hadronization mechanism
- Energy dependence-> Similar v₂(p_T) shape from 7.7
 2760 GeV
- Beam Energy Scan program-> *Explore the QCD* phase structure

Particle vs. Anti-particle v₂

- The difference between particles and anti-particles increases with decreasing beam energy NCQ scaling breaks
- Model comparison
 - Hydro + Transport (UrQMD): consistent with baryon data
 - Nambu-Jona-Lasino (NJL) model (partonic + hadronic potential): hadron splitting consistent
 - J. Steinheimer, V. Koch, and M. Bleicher PRC86, 44902(2013); J. Xu, et al., PRL112, 012301(2014)