Future Circular Collider study

18th EPPCN meeting 5 November 2015 CERN

W. Riegler, P. Charitos for the FCC study group

Strategic Motivation

• European Strategy for Particle Physics 2013:

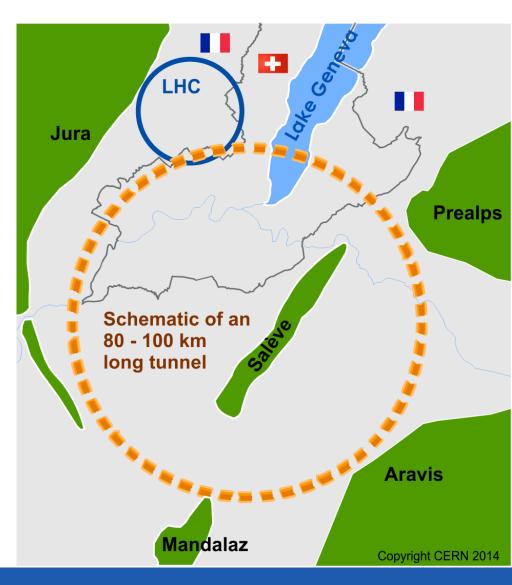
"...to propose an ambitious post-LHC accelerator project...., CERN should undertake design studies for accelerator projects in a global context,...with emphasis on proton-proton and electron-positron high-energy frontier machines....."

• ICFA statement 2014:

".... ICFA supports studies of energy frontier circular colliders and encourages global coordination....."

• US P5 recommendation 2014:

"....A very high-energy proton-proton collider is the most powerful tool for direct discovery of new particles and interactions under any scenario of physics results that can be acquired in the P5 time window...."



Future Circular Collider Study

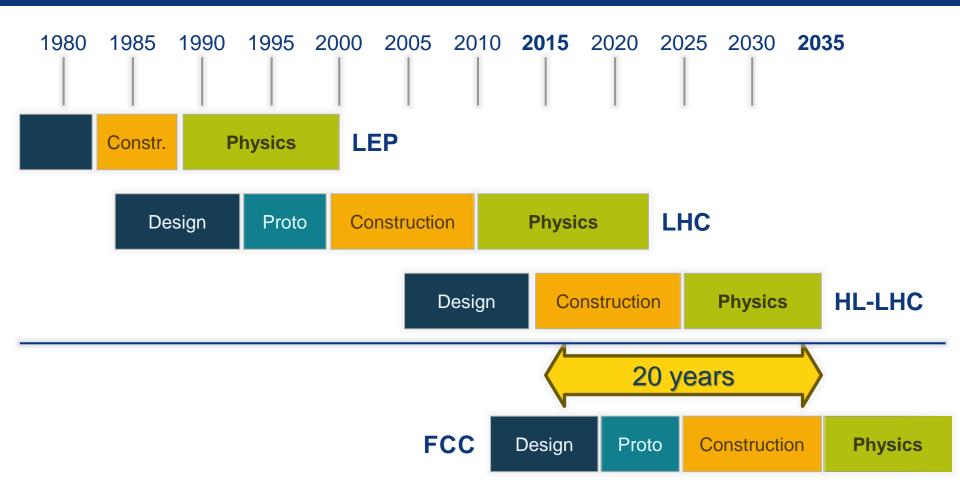
- International FCC collaboration (CERN as host lab) to study:
- *pp*-collider (*FCC-hh*)
 → main emphasis, defining infrastructure requirements

~16 T \Rightarrow 100 TeV *pp* in 100 km

- 80-100 km infrastructure in Geneva area
- e+e⁻ collider (FCC-ee) as potential intermediate step
- p-e (FCC-he) option
- HE-LHC with FCC-hh technology

FCC motivation: pushing the energy frontier

The name of the game of a hadron collider is energy reach


$E \alpha B_{dipole} x R_{bending}$

Cf. LHC: factor ~4 in radius, factor ~2 in field \rightarrow O(10) in E_{cms}

CERN Circular Colliders and FCC

FCC Conceptual Design Report by end 2018 for the European strategy update



FCC Scope: Accelerator and Infrastructure

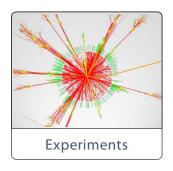
FCC-hh: 100 TeV pp collider as long-term goal → defines infrastructure needs FCC-ee: e⁺e⁻ collider, potential intermediate step FCC-he: integration aspects of pe collisions

R&D Programs

Push key technologies in dedicated R&D programmes e.g. 16 Tesla magnets for 100 TeV pp in 100 km SRF technologies and RF power sources



Tunnel infrastructure in Geneva area, linked to CERN accelerator complex **Site-specific**, requested by European strategy



Scope: Physics & Experiments

Physics Cases

- Elaborate and document
- Physics opportunities
- Discovery potentials

Experiment concepts for hh, ee and he Machine Detector Interface studies Concepts for worldwide data services

Overall cost model Cost scenarios for collider options Including infrastructure and injectors Implementation and governance models

- Two parameter sets for two operation phases:
 - Phase 1 (baseline): 5 x 10³⁴ cm⁻²s⁻¹ (peak), 250 fb⁻¹/year (averaged) 2500 fb⁻¹ within 10 years
 - Phase 2 (ultimate): ~2.5 x 10³⁵ cm⁻²s⁻¹ (peak), 1000 fb⁻¹/year (averaged)
 → 15,000 fb⁻¹ within 15 years
 - Yielding total luminosity O(20,000) fb⁻¹ over ~25 years of operation

LUMINOSITY GOALS FOR A 100-TEV PP COLLIDER

Ian Hinchliffe^a, Ashutosh Kotwal^b, Michelangelo L. Mangano^c, Chris Quigg^d, Lian-Tao Wang^e

^a Phyiscs Division, Lawrence Berkeley National Laboratory, Berkeley CA 94720, USA

^b Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA Duke University, Durham, North Carolina 27708, USA

^c PH Department, TH Unit, CERN, CH-1211 Geneva 23, Switzerland

 ^d Theoretical Physics Department, Fermi National Accelerator Laboratory P.O. Box 500, Batavia, Illinois 60510 USA
 Institut de Physique Théorique Philippe Meyer, École Normale Supérieure 24 rue Lhomond, 75231 Paris Cedex 05, France

^e Department of Physics and Enrico Fermi Institute, University of Chicago, Chicago, IL 60637 USA

April 24, 2015

Abstract

We consider diverse examples of science goals that provide a framework to assess luminosity goals for a future 100-TeV proton-proton collider.

An integrated luminosity goal of 20 ab⁻¹ matches very well the 100TeV c.m. Energy

LEP – highest energy e⁺e⁻ collider so far

circumference 27 km in operation from 1989 to 2000 maximum c.m. energy 209 GeV maximum synchrotron radiation power 23 MW

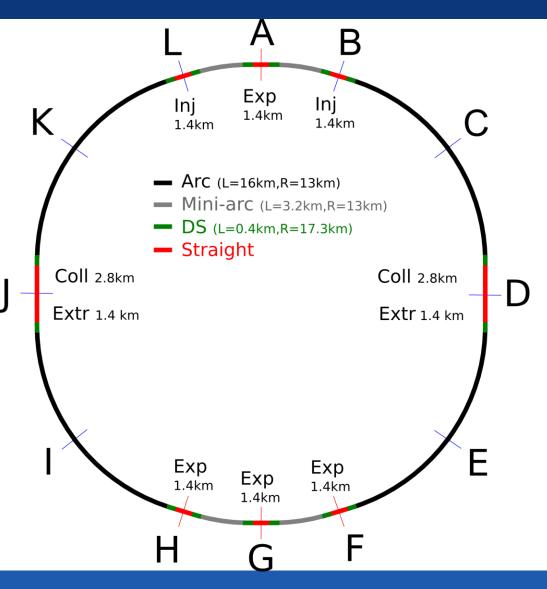
 highest possible luminosities at all working points
 beam energy range from 35 GeV to ≈200 GeV
 physics programs / energies: Z (45.5 GeV) Z pole, 'TeraZ' and high precision M_Z & Γ_Z W (80 GeV) W pair production threshold, high precision M_W H (120 GeV) ZH production (maximum rate of H's) t (175 GeV): tt threshold, H studies

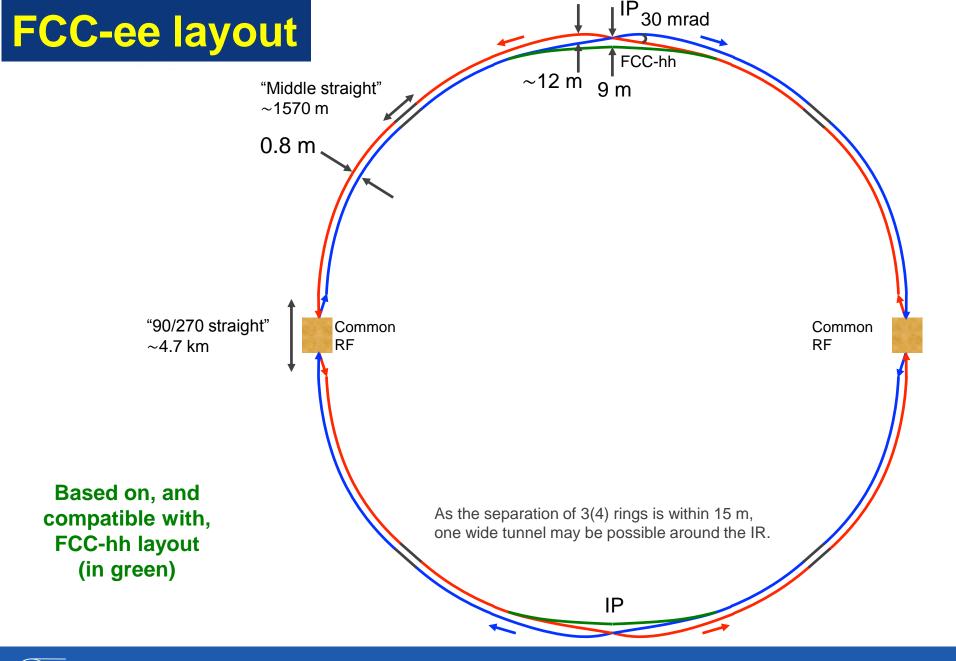
Site investigations

Alignment Shaft Tools	lersec	ted by	Shaf	ts Sh	aft Depti	15				
Choose alignment option	+	Shaft Depth (m))	Geology (m)			
93km quasi-circular 🔹		Point	Actual	Min	Mean N	Aax	Quatemary	Molasse	Urgonian	Calcaire
Tunnel depth at centre: 299mASL		A	203							
		в	227							
Gradient Parameters		С	218							
Azimuth (*): -15		D	153		154					
Slope Angle x-x(%): .5		E	247							
Slope Angle y-y(%): 0		F	262			304				
		G	396							
CALCULATE		н	266							
Alignment centre		1	146	141	144					
X: 2499812 Y: 1106889		J	248	247						
C Intersection CP 1 CP 2		к	163							
Angle	H G	L	182	182	184	187	17	165		
Depth 589m 589m		Total	2711	2607	2724	2867	585	2185	0	0

Alignment Profile

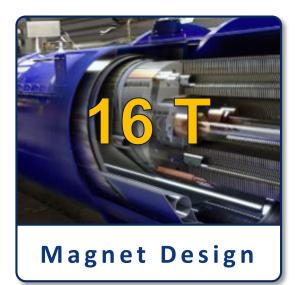
• 90 – 100 km fits geological situation well


LHC suitable as potential injector


FCC-hh preliminary layout

100 km layout for FCC-hh (different sizes under investigation)

- ⇒ Two high-luminosity experiments (A and G)
- ⇒ Two other experiments (F and H) grouped with main experiment in G
- \Rightarrow Two collimation lines
- ⇒ Two injection and two extraction lines


CERN

Key Technology R&D - HFM

- Increase critical current density
- Obtain high quantities at required quality
- Material Processing
- Reduce cost

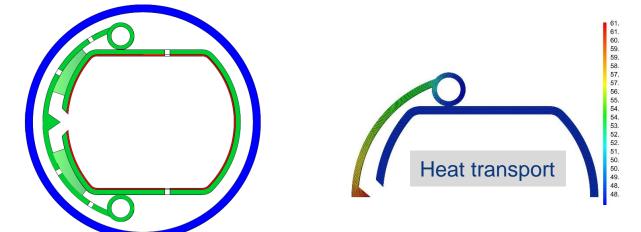
- Develop 16T short models
- Field quality and aperture
- Optimum coil geometry
- Manufacturing aspects
- Cost optimisation

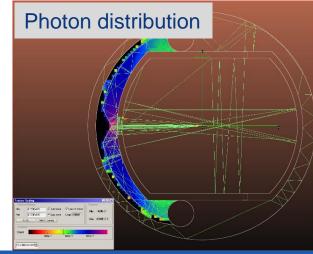
Key Technology R&D - RF

- Evaluate new fabrication techniques
- Study novel superconducting materials
- Improve thin film / coating techniques
- Optimise operation temperature to improve energy efficiency

- Push klystron efficiency beyond 75%
- Increase power range efficiency of solid-state amplifiers
- Assess power reach of IOTs

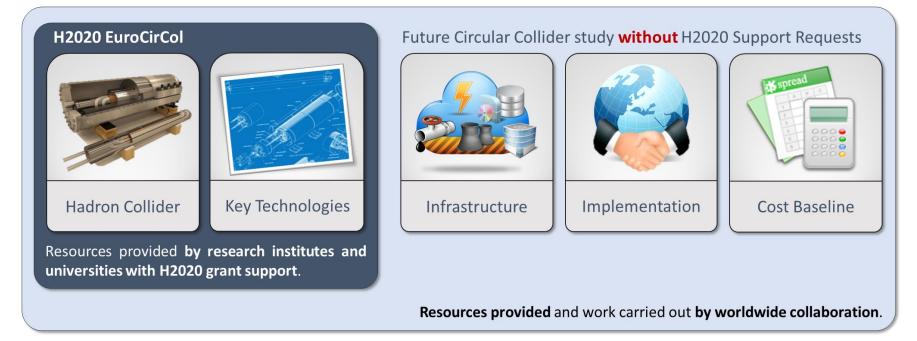
Synchrotron radiation/beam screen


High synchrotron radiation load (SR) of protons @ 50 TeV:


- ~30 W/m/beam @16 T (LHC <0.2W/m)
- \rightarrow 5 MW total in arcs

New type of chamber

absorption of synchrotron radiation avoids photo-electrons, helps vacuum



EuroCirCol EU Horizon 2020 Grant

EC contributes with funding to FCC-hh study

- Core aspects of hadron collider design: arc & IR optics design, 16 T magnet program, cryogenic beam vacuum system
- **Recognition of FCC Study by European Commission.**

•

•

FCC International Collaboration

61 institutes23 countries + EC

Status: 14 September 2015

Conclusions

Main scope of the study [Draft] – The FCC Communication Strategy is currently revised and a detailed document will be available later this year.

Even though the LHC programme is already well defined for the next two decades, the time has come to look even further ahead, so CERN has initiated an exploratory study for a future long-term project centred on a new-generation of circular colliders with a circumference of 80 to 100 kilometres. A worthy successor to the LHC, such an accelerator would allow particle physicists to push the boundaries of knowledge far beyond LHC.

The study aims to explore scenarios for different types of colliders (hadron-hadron, electron-electron and hadron-electron). In addition, the detectors needed to study the new physics regime shall determine the basic requirements for the tunnel, surface and technical infrastructures. Finally, the existing CERN accelerator infrastructure and long-term accelerator operation plans are taken into account.

Potential synergies with other international projects for future colliders, including linear colliders, are considered along with the collaboration with organizations and institutes working to promote physics and, more broadly STEM training.

Finally, it should be noted that the study includes cost and energy optimisation, industrialisation aspects and will provide implementation scenarios with detailed schedule and cost profiles.

Key Messages

The following mission statements are at the core of the Future Circular Collider-study.

Science/Physics: Expanding Our Horizons

"Prepare the ground for humankind's deepening exploration of our Universe through developing opportunities for New Physics breakthroughs."

Innovation: Pushing Novel Technologies

"To advance innovative technologies beyond state-of-the-art."

Collaboration: "To forge a globally coordinated strategy of converging activities for frontier particle colliders."

