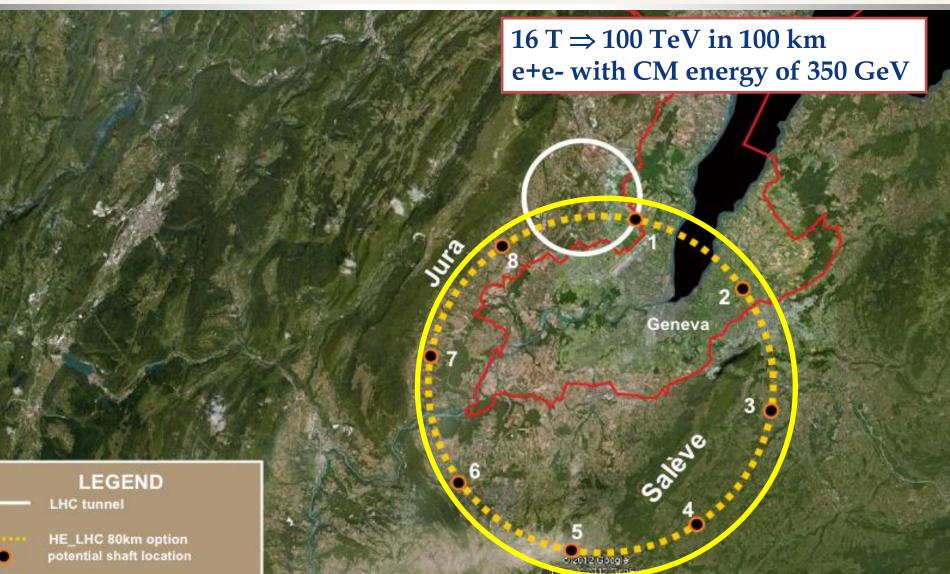
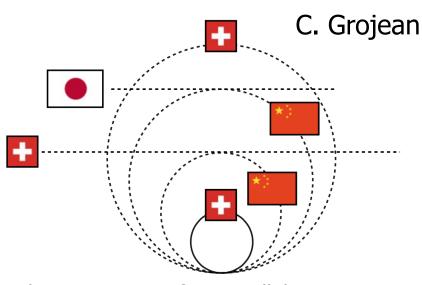

FCC-hh Physics

Albert De Roeck, CERN

FCC Mini-workshop Istanbul 11-12 March 2016

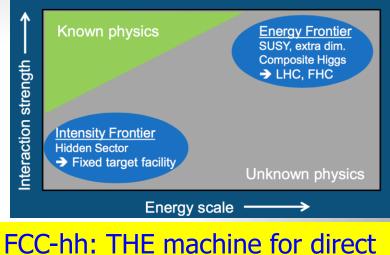



Outline

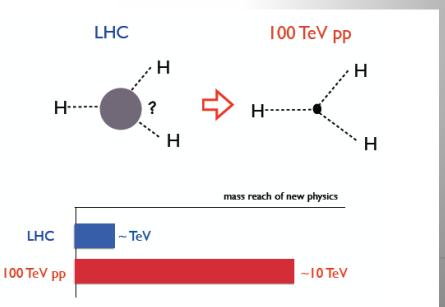
- Introduction: Experimental conditions at the FCC-hh
- Searches for massive particles
- The Higgs
- Dark Matter
- Precision measurements
- Conclusion

100 km tunnel infrastructure in Geneva area – design driven by pp-collider requirements with possibility of e⁺-e⁻ and p-e

Future Colliders?



Theorist view on future colliders

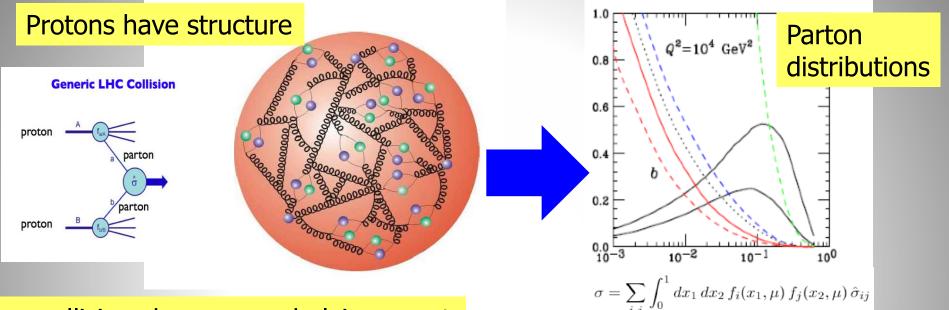

FCC-hh main themes:

The study of the Higgs Boson(s)

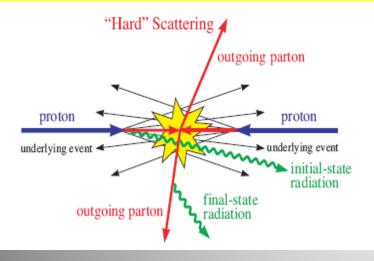
The search for massive new physics

search at the higher energy scale.

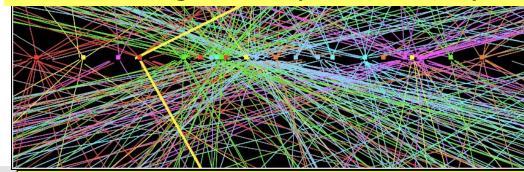
FCC-hh: A New Frontier


- LHC has shown that the hadron colliders can lead to precision measurements despite high pile-up, hadron structure, underlying event, etc.
- FCC-hh will above all be a machine for high event rates and has a high mass reach for searches
- Complementarity with future e+e- machines, circular or linear that may happen before a new hadron collider
- Studies for the physics case for the FCC-hh started in 2014. Mostly theory/phenomenology studies. Lots of room for especially more experimental contributions
- No no-loose theorem as such yet
- Document before the next strategy meeting in 2018-2019

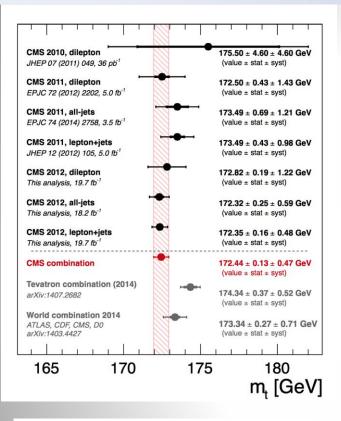
Physics Opportunities of a 100 TeV Proton-Proton Collider

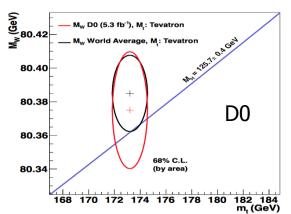

A recent review paper arXiv:1511.06495

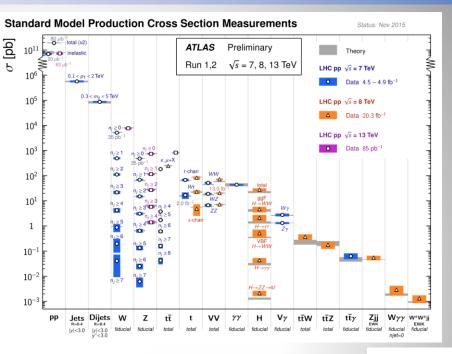
Nima Arkani-Hamed^a, Tao Han^b, Michelangelo Mangano^c, Lian-Tao Wang^d


pp Collisions : Complications

pp collisions have an underlying event



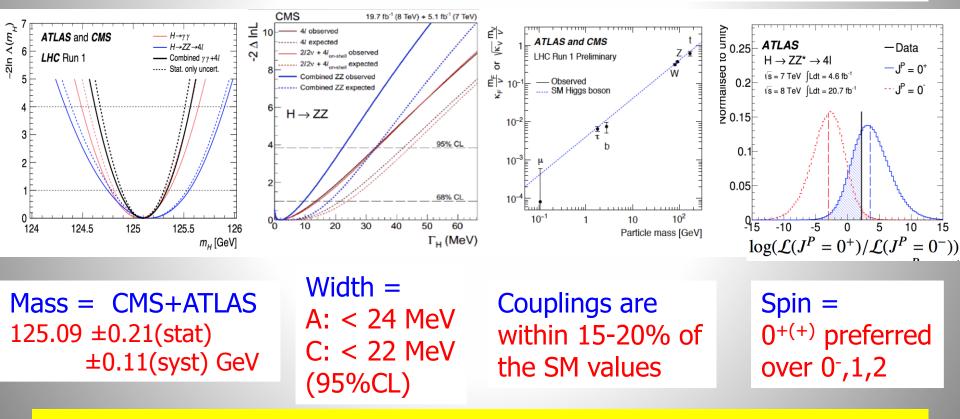

Pile-up@LHC approximate 20 collisions per bunch crossing in 2012 (more in future)



 $Z \rightarrow \mu\mu$ event with ~20 reconstructed vertices (2012)

LHC & Tevatron: Precision is Possible

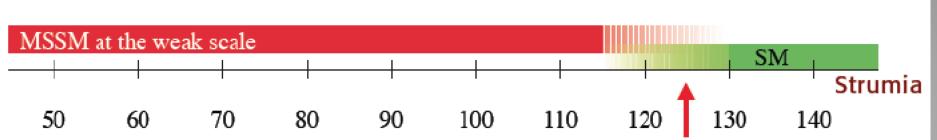
CMS/LHCb BR($B_s \rightarrow \mu\mu$) = $(3.0^{+0.9}_{-0.8} \text{ (stat)}^{+0.6}_{-0.4} \text{ (syst)}) \times 10^{-9}$ BR($B_d \rightarrow \mu\mu$) = $(3.5^{+2.1}_{-1.8} \text{ (stat+syst)}) \times 10^{-10}$



We learned a lot from the Tevatron and in particular from the LHC

We Found a Higgs Particle @ the LHC

We know already a lot on this Brand New Higgs Particle!!


CMS: PAS-HIG-15-002 ATLAS-CONF-2015-044

SM-like behaviour for most properties, but continue to look for anomalies, i.e. unexpected decay modes or couplings, multi-Higgs production...

A Higgs @ 125 GeV...

A malicious choice!

The Higgs: so simple yet so unnatural

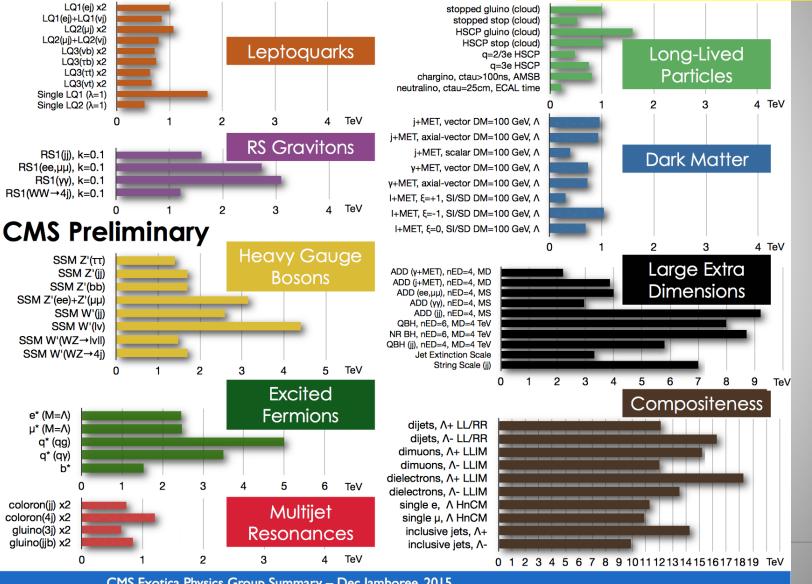
 $m_{H} = 125.0 + - 0.2 \text{ GeV}$

Guido Altarelli 1941-2015 Stockholm Nobel Symposium May 2013

"We do not understand why the mass of the Higgs is 125 GeV It most likely tells us something on what is Beyond the Standard Model"

A light Higgs is "unnatural" and calls for physics beyond the SM

But where is everybody?


Eg: NO clear sign of SUSY with the data collected in run-I (similar plot for CMS)

	ATLAS SUSY S Status: July 2015	earches	* - 95%	% C	LLC	ower Limits		ATL	AS Preliminary $\sqrt{s} = 7.8$ TeV	
_	Model	e, μ, τ, γ	Jets E	miss T∫	<i>L dt</i> [fb	⁻¹] Mass limit	$\sqrt{s} = 7 \text{ TeV}$	$\sqrt{s} = 8 \text{ TeV}$	Reference	
Indian Coordoo	GMS (2000) GMS (2000) GGM (bino NLSP) GGM (higgsino-bino NLSP) GGM (higgsino-bino NLSP) GGM (higgsino NLSP) GGM (higgsino NLSP) Gravitino LSP	$2 e, \mu \text{ (off-Z)} 0 0-1 e, \mu 2 e, \mu 1-2 \tau + 0-1 \ell 2 \gamma \gamma 2 e, \mu (Z)$	2-6 jets 1-3 jets 2 jets 2-6 jets 2-6 jets 0-3 jets 0-2 jets 2 jets 2 jets	Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20 20 20 20.3 20.3 2	\$\vec{q}\$ \$\vec{s}\$0 GeV \$\vec{q}\$ 100-440 GeV \$\vec{q}\$ 780 GeV \$\vec{q}\$ 780 GeV \$\vec{g}\$ \$\vec{g}\$ \$\vec{g}\$ <th>1.33 TeV 1.26 TeV 1.26 TeV 1.32 TeV 1.5 TeV 1.3 TeV 1.25 TeV</th> <th>$\label{eq:response} \begin{split} & \text{TeV} \ m(\bar{q}){=}m(\bar{g}) \\ & m(\bar{\chi}_1^{01}){=}0 \ \text{GeV}, \ m(1^{14} \ \text{gen.} \ \bar{q}){=}m(2^{16} \ \text{gen.} \ \bar{q}) \\ & m(\bar{\chi}_1^{01}){=}0 \ \text{GeV} \\ & tan\beta {=}20 \\ & cr(\text{NLSP}){<}0.1 \ \text{mm} \\ & m(\bar{\chi}_1^{01}){=}300 \ \text{GeV}, \ cr(\text{NLSP}){<}0.1 \ \text{mm}, \ \mu{<}0 \\ & m(\bar{\chi}_1^{01}){=}365 \ \text{GeV} \\ & m(\bar{\chi}_1^{01}){=}365 \ \text{GeV}, \ cr(\text{NLSP}){<}0.1 \ \text{mm}, \ \mu{>}0 \\ & m(\bar{\chi}_1^{01}){=}365 \ \text{GeV} \\ & m(\bar{\chi}_1^{01}){=}365 \ \text{GeV}, \ cr(\text{NLSP}){<}0.1 \ \text{mm}, \ \mu{>}0 \\ & m(\bar{\chi}_1^{01}){=}365 \ \text{GeV}, \ cr(\text{NLSP}){<}0.1 \ \text{mm}, \ \mu{>}0 \\ & m(\bar{\chi}_1^{01}){=}360 \ \text{GeV} \\ & m(\bar{\chi}_1^{01}){=}1.8 \times 10^{-4} \ \text{eV}, \ m(\bar{g}){=}m(\bar{g}){=}1.5 \ \text{TeV} \end{split}$</th> <th>1507.05525 1405.7875 1507.05525 1503.03290 1405.7875 1507.05525 1507.05525 1507.05493 1507.05493 1507.05493 1507.05493 1507.05493 1507.05493 1507.05493 1507.05493 1507.05493</th> <th>THIS WASN'T PREDICTED IN OUR MODEL - WHAT SHOULD WE DO? DON T SAY ANYTHING MAYBE NO ONE WILL NOTICE</th>	1.33 TeV 1.26 TeV 1.26 TeV 1.32 TeV 1.5 TeV 1.3 TeV 1.25 TeV	$\label{eq:response} \begin{split} & \text{TeV} \ m(\bar{q}){=}m(\bar{g}) \\ & m(\bar{\chi}_1^{01}){=}0 \ \text{GeV}, \ m(1^{14} \ \text{gen.} \ \bar{q}){=}m(2^{16} \ \text{gen.} \ \bar{q}) \\ & m(\bar{\chi}_1^{01}){=}0 \ \text{GeV} \\ & tan\beta {=}20 \\ & cr(\text{NLSP}){<}0.1 \ \text{mm} \\ & m(\bar{\chi}_1^{01}){=}300 \ \text{GeV}, \ cr(\text{NLSP}){<}0.1 \ \text{mm}, \ \mu{<}0 \\ & m(\bar{\chi}_1^{01}){=}365 \ \text{GeV} \\ & m(\bar{\chi}_1^{01}){=}365 \ \text{GeV}, \ cr(\text{NLSP}){<}0.1 \ \text{mm}, \ \mu{>}0 \\ & m(\bar{\chi}_1^{01}){=}365 \ \text{GeV} \\ & m(\bar{\chi}_1^{01}){=}365 \ \text{GeV}, \ cr(\text{NLSP}){<}0.1 \ \text{mm}, \ \mu{>}0 \\ & m(\bar{\chi}_1^{01}){=}365 \ \text{GeV}, \ cr(\text{NLSP}){<}0.1 \ \text{mm}, \ \mu{>}0 \\ & m(\bar{\chi}_1^{01}){=}360 \ \text{GeV} \\ & m(\bar{\chi}_1^{01}){=}1.8 \times 10^{-4} \ \text{eV}, \ m(\bar{g}){=}m(\bar{g}){=}1.5 \ \text{TeV} \end{split}$	1507.05525 1405.7875 1507.05525 1503.03290 1405.7875 1507.05525 1507.05525 1507.05493 1507.05493 1507.05493 1507.05493 1507.05493 1507.05493 1507.05493 1507.05493 1507.05493	THIS WASN'T PREDICTED IN OUR MODEL - WHAT SHOULD WE DO? DON T SAY ANYTHING MAYBE NO ONE WILL NOTICE
3 rd gen.	$\begin{array}{c} \widetilde{\mathbf{v}} \widetilde{\mathbf{g}} \widetilde{\mathbf{g}}, \widetilde{\mathbf{g}} \rightarrow b \widetilde{b} \widetilde{\boldsymbol{\chi}}_{1}^{0} \\ \widetilde{\mathbf{g}} \widetilde{\mathbf{g}}, \widetilde{\mathbf{g}} \rightarrow t \widetilde{\boldsymbol{\chi}}_{1}^{0} \\ \widetilde{\mathbf{g}} \widetilde{\mathbf{g}}, \widetilde{\mathbf{g}} \rightarrow t \widetilde{\boldsymbol{\chi}}_{1}^{0} \\ \widetilde{\mathbf{g}} \widetilde{\mathbf{g}}, \widetilde{\mathbf{g}} \rightarrow b \widetilde{\boldsymbol{\chi}}_{1}^{1} \end{array}$	0 0-1 <i>e</i> ,μ 0-1 <i>e</i> ,μ	7-10 jets 3 b	Yes Yes	20.1 20.3 20.1 20.1	8 Ř 1. Ř Ř	1.25 TeV 1 TeV 1.34 TeV 1.3 TeV	$\begin{array}{l} m(\tilde{\kappa}_{1}^{0}){<}400 \ {\rm GeV} \\ m(\tilde{\kappa}_{1}^{0}) {<}350 \ {\rm GeV} \\ m(\tilde{\kappa}_{1}^{0}){<}400 \ {\rm GeV} \\ m(\tilde{\kappa}_{1}^{0}){<}300 \ {\rm GeV} \end{array}$	1407.0600 1308.1841 1407.0600 1407.0600	
3 rd gen. squarks	$ \begin{array}{c} \underbrace{b_1 b_1, b_1 \rightarrow b \tilde{x}_1^0}_{b_1 b_1, b_1 \rightarrow b \tilde{x}_1^1}, \\ \underbrace{b_1 b_1, b_1 \rightarrow b \tilde{x}_1^1}_{i_1 i_1, i_1 \rightarrow b \tilde{x}_1^1}, \\ b_1 $		0-3 <i>b</i> 1-2 <i>b</i> -2 jets/1-2 <i>b</i> ono-jet/ <i>c</i> -tag 1 <i>b</i>	Yes Yes 4.7, Yes Yes Yes	20.1 20.3 20.3 20.3 20.3 20.3 20.3 20.3	bile 100-620 GeV bile 275-440 GeV cile 230-460 GeV cile 210-700 GeV		$\begin{split} m(\xi_1^0) &\!$	1308.2631 1404.2500 1209.2102,1407.0583 1506.08616 1407.0608 1403.5222 1403.5222	
EW	$\begin{array}{c} \tilde{L}_{L,R}\tilde{L}_{L,R},\tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{*}\tilde{\chi}_{1}^{*},\tilde{\chi}_{1}^{*}\rightarrow \tilde{\ell}\nu(\tilde{r}) \\ \tilde{\chi}_{1}^{*}\tilde{\chi}_{1}^{*},\tilde{\chi}_{1}^{*}\rightarrow \tilde{r}\nu(\tilde{r}) \\ \tilde{\chi}_{1}^{*}\tilde{\chi}_{1}^{*},\tilde{\chi}_{1}^{*}\rightarrow \tilde{r}\nu(\tilde{r}) \\ \tilde{\chi}_{1}^{*}\tilde{\chi}_{0}^{*}\rightarrow \ell_{1}^{*}\nu\ell_{1}(\ell\tilde{r})\nu, \tilde{r}\tilde{\ell}_{1}\ell(\tilde{r})\nu \\ \tilde{\chi}_{1}^{*}\tilde{\chi}_{0}^{*}\rightarrow \tilde{k}_{1}\nu\ell_{1}^{*}\ell_{1} \\ \tilde{\chi}_{1}^{*}\tilde{\chi}_{2}^{*}\rightarrow \tilde{k}_{0}^{*}\ell_{1} \\ \tilde{\chi}_{2}^{*}\tilde{\chi}_{1}^{*},\tilde{\chi}_{2}^{*}\rightarrow \tilde{\ell}_{R}\ell \\ GGM (wino NLSP) weak processing (1)$	4 e, µ	0 - 0-2 jets 0-2 <i>b</i> 0	Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3			$\begin{split} & m(\tilde{t}_{1}^{0}){=}0 \text{ GeV } \\ & m(\tilde{t}_{1}^{0}){=}0 \text{ GeV } m(\tilde{t}, \tilde{v}){=}0.5(m(\tilde{t}_{1}^{v}){+}m(\tilde{t}_{1}^{0})) \\ & m(\tilde{t}_{1}^{0}){=}0 \text{ GeV }, m(\tilde{t}, \tilde{v}){=}0.5(m(\tilde{t}_{1}^{v}){+}m(\tilde{t}_{1}^{0})) \\ & m(\tilde{t}_{1}^{v}){=}m(\tilde{t}_{2}^{v}){,}m(\tilde{t}_{1}^{v}){=}0, \text{ sleptons decoupled} \\ & m(\tilde{t}_{1}^{v}){=}m(\tilde{t}_{2}^{v}){,}m(\tilde{t}_{1}^{v}){=}0, \text{ sleptons decoupled} \\ & m(\tilde{t}_{1}^{v}){=}m(\tilde{t}_{2}^{v}){,}m(\tilde{t}, \tilde{v}){=}0.5(m(\tilde{t}_{2}^{v}){+}m(\tilde{t}_{1}^{v})) \\ & cr<1 \text{ mm} \end{split}$	1403.5294 1403.5294 1407.0350 1402.7029 1403.5294, 1402.7029 1501.07110 1405.5086 1507.05493	
Long-lived	Direct $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}$ prod., long-lived Direct $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}$ prod., long-lived Stable, stopped \tilde{g} R-hadron Stable \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{\chi}_{1}^{0} \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) +$ $\tilde{g}\tilde{g}, \tilde{\chi}_{1}^{0} \rightarrow eev/ew/\mu\nu$ $GMS \tilde{g}, \tilde{\chi}_{1}^{0} \rightarrow eev/ew/\mu\nu$		1-5 jets - - -	Yes Yes - Yes	20.3 18.4 27.9 19.1 19.1 20.3 20.3 20.3	x ⁺ ₁ 270 GeV x ⁺ ₁ 482 GeV g 832 GeV g 537 GeV x ⁰ ₁ 435 GeV x ⁰ ₁ 1.0 T x ⁰ ₁ 1.0 T		$\begin{split} &m(\tilde{k}_1^{-1}) -m(\tilde{k}_1^{0}) \sim 160 \ \text{MeV}, \ \tau(\tilde{k}_1^{-1}) = 0.2 \ \text{ns} \\ &m(\tilde{k}_1^{-1}) -m(\tilde{k}_1^{0}) \sim 160 \ \text{MeV}, \ \tau(\tilde{k}_1^{-1}) < 15 \ \text{ns} \\ &m(\tilde{k}_1^{0}) = 100 \ \text{GeV}, \ 10 \ \mu\text{s} < \tau(\tilde{k}) < 1000 \ \text{s} \\ &10 < \text{tan}\beta < 50 \\ &2 < \tau(\tilde{k}_1^{0}) < 3 \ \text{ns}, \ \text{SPS8} \ \text{model} \\ &7 < c\tau(\tilde{k}_1^{0}) < 740 \ \text{mm}, \ m(\tilde{k}) = 1.3 \ \text{TeV} \\ &6 < c\tau(\tilde{k}_1^{0}) < 480 \ \text{mm}, \ m(\tilde{k}) = 1.1 \ \text{TeV} \end{split}$	1310.3675 1506.05332 1310.6584 1411.6795 1411.6795 1409.5542 1504.05162 1504.05162	
	LFV $pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu$ Bilinear RPV CMSSM $\tilde{X}_{1}^{\dagger}\tilde{X}_{1}^{-}, \tilde{X}_{1}^{\dagger} \rightarrow W\tilde{X}_{1}^{0}, \tilde{X}_{1}^{0} \rightarrow ee\tilde{v}_{\mu}, e\mu$ $\tilde{X}_{1}^{\dagger}\tilde{X}_{1}^{-}, \tilde{X}_{1}^{\dagger} \rightarrow W\tilde{X}_{1}^{0}, \tilde{X}_{1}^{0} \rightarrow \tau\tau\tilde{v}_{e}, e\tau$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\tilde{q}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\tilde{q}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\tilde{t}_{1}, \tilde{t}_{1} \rightarrow bqqq$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\tilde{t}_{1}, \tilde{t}_{1}, \tilde{t}_{1} \rightarrow bs$ $\tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow bs$	$\begin{array}{ccc} 2 \ e, \mu \ (\text{SS}) \\ \tilde{\nu}_e & 4 \ e, \mu \\ \tilde{\nu}_\tau & 3 \ e, \mu + \tau \\ & 0 \\ 0 \\ 2 \ e, \mu \ (\text{SS}) \end{array}$	- 6-7 jets 6-7 jets	Yes Yes - - Yes -	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	pr. million million million		$\begin{array}{l} & \mathbf{V} & \lambda_{311}'=0.11, \lambda_{132/133/233}=0.07 \\ & m(\bar{q})=m(\bar{g}), c_{7,5} < 1 \mbox{ mm} \\ & m(\tilde{k}_{1}^{0})>0.2 \times m(\tilde{k}_{1}^{-1}), \lambda_{121} \neq 0 \\ & m(\tilde{k}_{1}^{0})>0.2 \times m(\tilde{k}_{1}^{-1}), \lambda_{137} \neq 0 \\ & \text{BR}(r)=\text{BR}(r)=0\% \\ & m(\tilde{k}_{1}^{0})=600 \mbox{ GeV} \\ & \text{BR}(\tilde{r}_{1} \rightarrow b e/\mu) {>} 20\% \end{array}$	1503.04430 1404.2500 1405.5086 1405.5086 1502.05686 1502.05686 1404.250 ATLAS-CONF-2015-026 ATLAS-CONF-2015-015	
Oti	her Scalar charm, $\tilde{c} \rightarrow c \tilde{\chi}_1^0$	0	2 c	Yes	20.3	č 490 GeV		$m(\tilde{\chi}_1^0)$ <200 GeV	1501.01325	
					1(0^{-1}	1	Mass scale [TeV]		

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 σ theoretical signal cross section uncertainty.

Summary of Run-I Exotica Searches

Similar results for ATLAS

CMS Exotica Physics Group Summary – Dec Jamboree, 2015

Perhaps Something on the Horizon??

New Scientist

New Scientist of 3rd March 2016

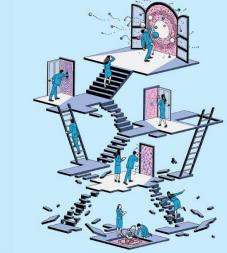
HOME NEWS TECHNOLOGY SPACE PHYSICS HEALTH EARTH HUMANS LIFE TOPICS EVENTS JOBS MAGAZINE

Home | Features | Physics

FEATURE 2 March 2016

Bigger than the Higgs, bigger even than gravitational waves...

It looks like the LHC may have found a surprise massive particle that gives a glimpse into a better – and entirely unexpected – theory of reality


IF IT is anything, it is what Gian Giudice has been waiting for his entire scientific life. "We are not talking about a confirmation of an established theory, but about opening a door into an unknown and unexplored world," says Giudice, a theoretical particle physicist based at CERN near Geneva, Switzerland.

That's if it turns out to be anything. At the moment, all we have are hints emerging from the debris of collisions within CERN's showpiece particle smasher, the Large Hadron Collider. But if those hints firm up in the course of the coming weeks and months, it could be the big one. Forget the Higgs, forget even gravitational waves: 2016 could go down as the year when a new picture of nature's fundamental workings was unveiled.

The hopes spring from two "bumps" that have appeared independently, in the same place, in the latest data from the LHC's two big detectors, ATLAS and CMS. They point to the existence of a particle that dwarfs even the Higgs boson, the giver-of-mass particle discovered at CERN in July 2012.

The Higgs was a milestone, but ultimately one that marked the end of a road. It was the last particle to be found of those predicted by the standard model of particle physics. This clutch of sophisticated equations matches every experimental result to date with exquisite precision, and explains the workings of three of the fundamental forces of nature: electromagnetism and the weak and strong nuclear forces ...

Has the LHC caught a glimpse of a new theory of reality? Stuart Patience

Juaitraticite

High Mass Search: $X \rightarrow \gamma \gamma \gamma$??

News from the 2015 data run in last December!!! ->Some excitement over and observed excess in both experiments for a di-photon mass of around 750 GeV A totally unexpected $3.6\sigma -> 2.0\sigma$ (NWA) $2.6\sigma \rightarrow (1.2\sigma)$ (1% width) 3.9 σ -> 2.3 σ (Γ =45 GeV) new particle??? 104 ATLAS Preliminarv CMS Preliminary 2.6 fb⁻¹ (13 TeV) ATLAS-CONF-2015-081 Events / (20 GeV) BEB category 10³ CMS EXO-15-004 109 Background-only fit 10² √s = 13 TeV, 3.2 fb⁻¹ Data Fit mode ±1σ 10 +2 a (data-fit)/o_{stat} 10⁻¹ 3×10^{2} 4×10² 5×10² 10³ 2×10^{9} 1600 200 600 800 1000 1200 1400 m, , (GeV) m,, [GeV]

Events / 40 GeV

Statistical fluctuation? A new resonance? See ~ 250 papers from theorists on the arXiv since... Let's see with more data in 2016

The Next Future Facilities

The ultimate goal: answering the big open issues

What's the origin of EW symmetry breaking? The solution to the hierarchy problem?

- What's the origin of matter/antimatter asymmetry in the universe?
- What's the origin of Dark matter / energy ?
- What's the origin of neutrino masses?
- What's the solution to the strong CP problem?
-

and continue pursuing the underlying assumptions:

M. Mangano

- are there additional fundamental forces, symmetries?
- are the known elementary particles truly elementary?
 - compositeness? strings?

A 100 TeV pp Collider: Luminosity?

LUMINOSITY GOALS FOR A 100-TEV PP COLLIDER

Ian Hinchliffe^a^{*}, Ashutosh Kotwal^b[†], Michelangelo L. Mangano^c[‡], Chris Quigg^d[§], Lian-Tao Wang^e¶

^a Phyiscs Division, Lawrence Berkeley National Laboratory, Berkeley CA 94720, USA

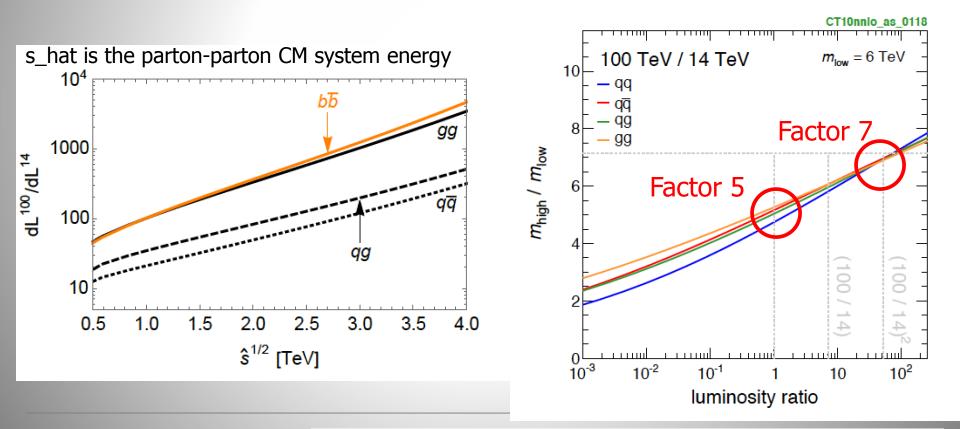
^b Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA Duke University, Durham, North Carolina 27708, USA

^c PH Department, TH Unit, CERN, CH-1211 Geneva 23, Switzerland

 ^d Theoretical Physics Department, Fermi National Accelerator Laboratory P.O. Box 500, Batavia, Illinois 60510 USA
 Institut de Physique Théorique Philippe Meyer, École Normale Supérieure 24 rue Lhomond, 75231 Paris Cedex 05, France

^e Department of Physics and Enrico Fermi Institute, University of Chicago, Chicago, IL 60637 USA

April 24, 2015


Abstract

We consider diverse examples of science goals that provide a framework to assess luminosity goals for a future 100-TeV proton-proton collider.

Important discussion on luminosity: An integrated luminosity goal of 20 ab⁻¹ matches very well the 100 TeV C.M. Energy

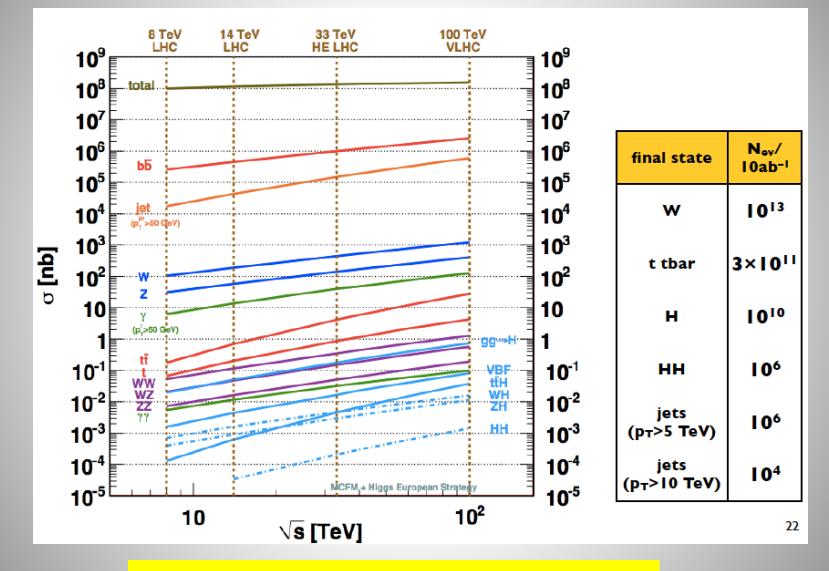
FCC-hh: Parton Luminosities

Parton luminosity ratios between 100 TeV and 14 TeV and the ratio of the reach for new physics scale from the LHC to the 100 TeV collider --compared to a LHC reach limit of 6 TeV-- vs luminosity Generically about a factor ~5-6 increase in mass-reach w.r.t. HL-LHC

http://collider-reach.web.cern.ch/collider-reach/

Luminosity for a Hadron Machine

The present working hypothesis is:

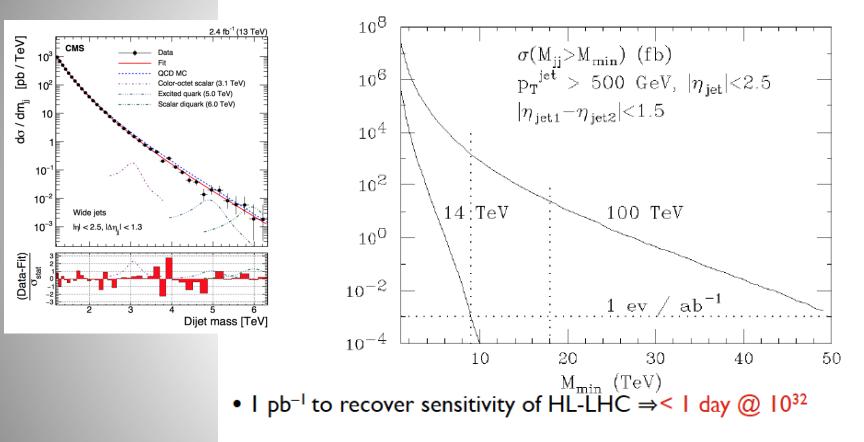

- peak luminosity baseline: 5x10³⁴
- peak luminosity ultimate: ≤ 30x10³⁴
- integrated luminosity baseline ~250 fb⁻¹ (average per year)
- integrated luminosity ultimate ~1000 fb⁻¹ (average per year)

An operation scenario with:

- 10 years baseline, leading to 2.5 ab⁻¹
- 15 years ultimate, leading to 15 ab⁻¹

would result in a total of O(20) ab⁻¹ over 25 years of operation.

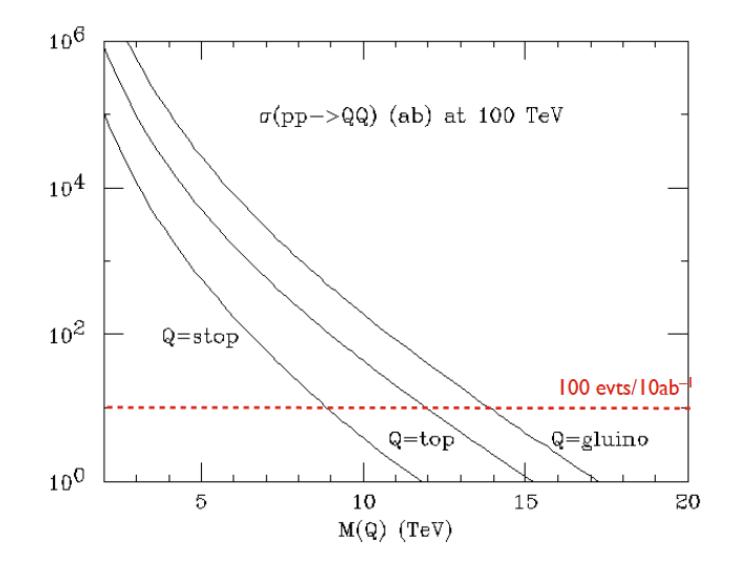
Cross Sections/Events at the FCC-hh



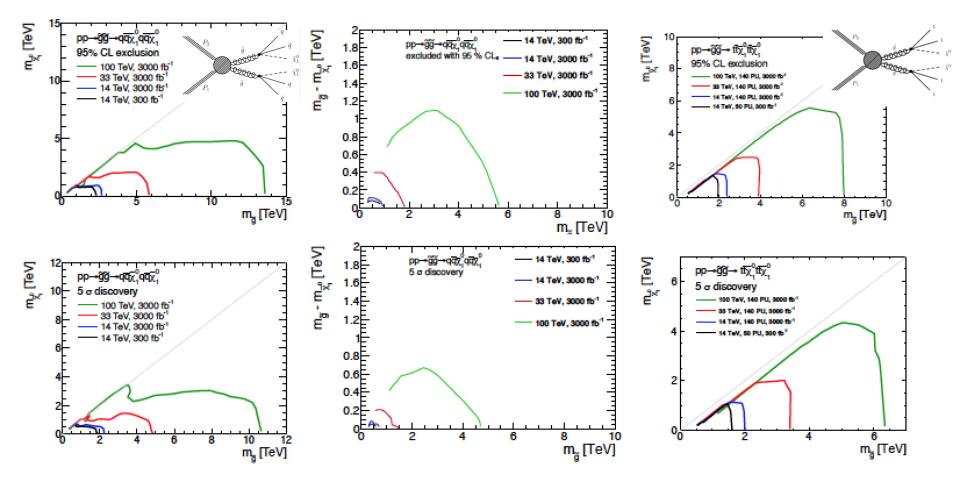
Huge event rates, eg jets with $p_T > 10 \text{ GeV}$

New Massive Particles

Searches in Dijet Production


Even with very modest luminosity one quickly bypasses the LHC sensitivity

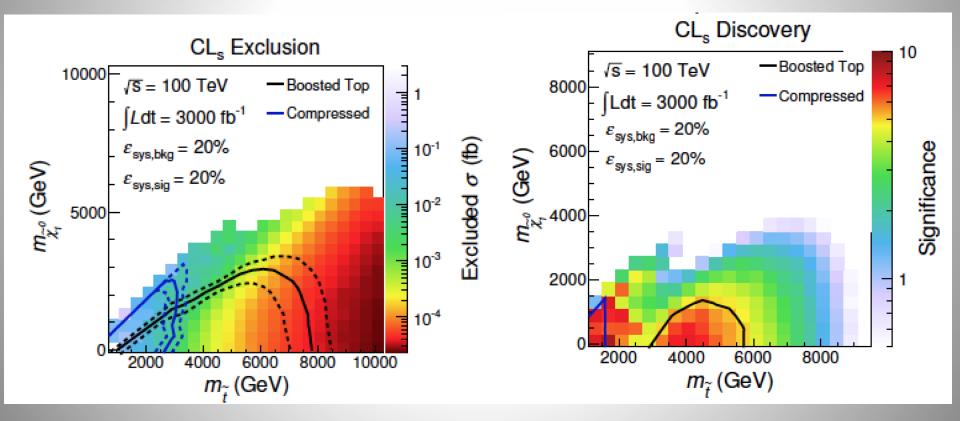
- 50pb⁻¹ to 2x the sensitivity of HL-LHC \Rightarrow < 1 month @ 10³²
- Ifb⁻¹ to 3x the sensitivity of HL-LHC \Rightarrow < 1 year @ 2x10³²


High Mass Discovery Potential

Discovery reach for pair production of strongly-interacting particles

SUSY Sparticle Reaches

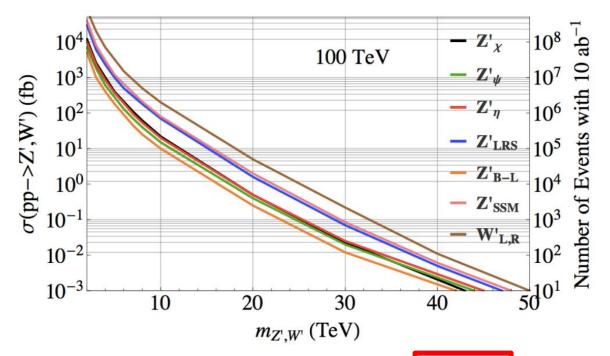
Popular presentation of data: Simplified ModelS (SMS)



Gluino discovery (exclusion) up to 10 TeV (14 TeV) with 3 ab⁻¹

Stop Production

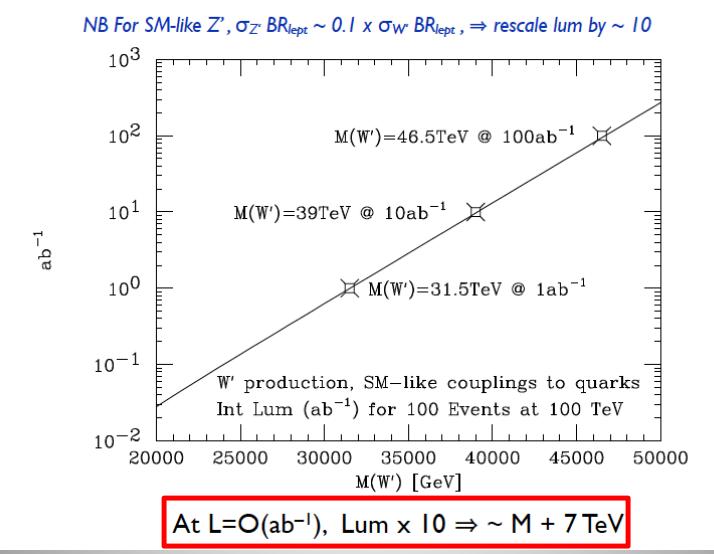
 $ilde{\chi}_1^0$


Popular presentation of data: Simplified ModelS (SMS)

Stop discovery (exclusion) up to 6 TeV (8 TeV) with 3 ab⁻¹

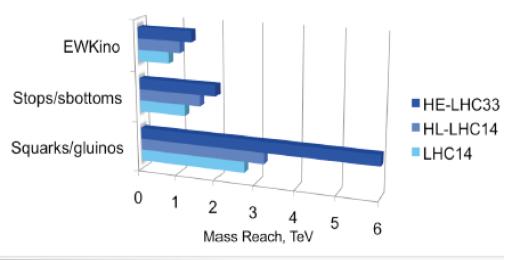
Reach for Z' Searches

New weak gauge interactions



Discovery reach T.Rizzo, arXiv:1403.5465

Model	1 ab^{-1}	10 ab ⁻¹	100 ab ⁻¹
SSM	23.8	33.3	41.3
LRM	22.6	31.5	39.5
ψ	20.1	29.1	37.2
x	22.7	30.6	38.2
η	20.3	29.8	38.0
Ι	22.4	29.2	36.2


New Boson Discovery Reach

Example: W' with SM-like couplings

FCC-hh: Searches for New Particles

Searches for pair produced SUSY particles

E.g. 2HDM in SUSY

 m_h, m_H, m_A, m_{H^\pm}

 $aneta \equiv \langle \Phi_2 \rangle / \langle \Phi_1 \rangle$

Fine tuning and naturalness: (N.Craig, BSM@100 Wshop)

$$\Delta \approx \sin^2(2\beta) \frac{m_H^2}{m_h^2}$$

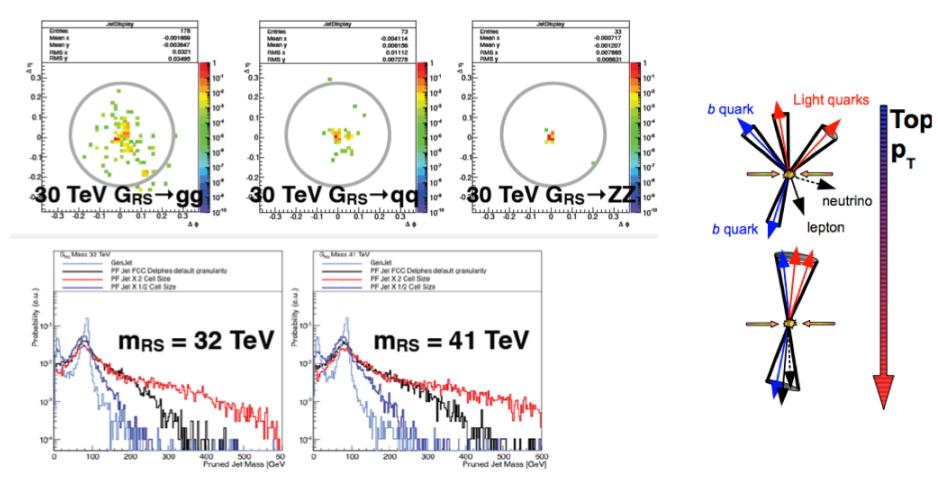
$$\Delta(\tan\beta=50)\leq 1-m_H\lesssim 3.1~{
m TeV}$$

Extra H can be heavy, well above LHC reach, but cannot be arbitrarily heavy

FCC-hh -Reach sparticle masses search up to about 15 TeV for gluinos and 8 TeV for stops for 3 ab⁻¹ -Excited quarks probe the structure of quarks down to 4x10⁻²¹ m

-Discovery of resonances up to masses of about 40-50 TeV

Upper limit for higher Higgs mass in 2HDM models?


• Why I00 TeV ?

 Need for O(100 TeV) in the cards since the SSC days: fully explore EWSB, probing in particular unitarization of WW scattering at m(WW)> TeV, and explore dynamics well above EWSB

Boosted Objects

M.Pierini

Already important at the LHC now! Will be even more so at a 100 TeV machine !

Calorimeter granularity important in optimization for boosted objects

Higgs

Higgs Production @ 100 TeV

Rate comparisons at 8, 14, 100 TeV

	N 100	N100 / N8	N ₁₀₀ /N ₁₄
gg→H	16 G	4.2 × 10 ⁴	110
VBF	1.6 G	5. × 0 ⁴	120
WH	320 M	2.3 × 10 ⁴	66
ZH	220 M	2.8 × 10 ⁴	84
ttH	760 M	29 × 104	420
gg→HH	28 M		280

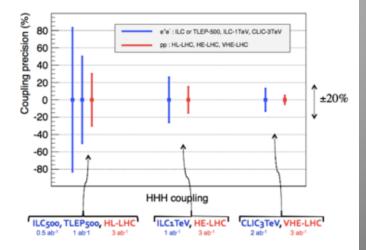
 $N_{100} = \sigma_{100 \,\text{TeV}} \times 20 \,\text{ab}^{-1}$

 $N_8 = \sigma_{8 \text{ TeV}} \times 20 \text{ fb}^{-1}$

$$N_{14} = \sigma_{14 \text{ TeV}} \times 3 \text{ ab}^{-1}$$

Statistical precision:

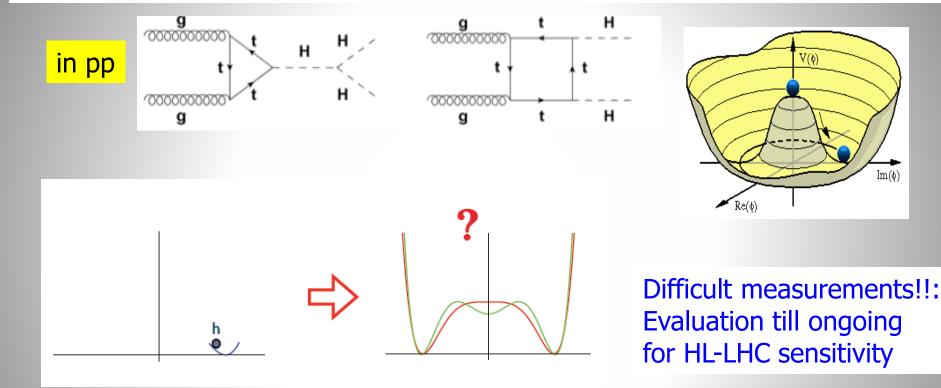
- O(100 500) better w.r.t Run 1
- O(10 20) better w.r.t HL-LHC


FCC-hh Higgs Program

➡ Rare SM and non-SM decays

• $\delta \kappa_{\mu} \approx 2\%$ (extrapolated from LHC)

- ➡ Higgs self coupling
- ⇒ BSM (heavy) Higgs boson production
- Cascade decays including Higgs bosons
- Differential cross section measurements
- ➡ ... and in general a continuation of the LHC/HL-LHC program


	HL-LHC	HE-LHC	VLHC
$\sqrt{s} \; (\text{TeV})$	14	33	100
$\int {\cal L} dt ~({ m fb}^{-1})$	3000	3000	3000
$\sigma \cdot \text{BR}(pp \to HH \to bb\gamma\gamma) \text{ (fb)}$	0.089	0.545	3.73
S/\sqrt{B}	2.3	6.2	15.0
$\lambda \; ({ m stat})$	50%	20%	8%
arXiv:1310.8361			

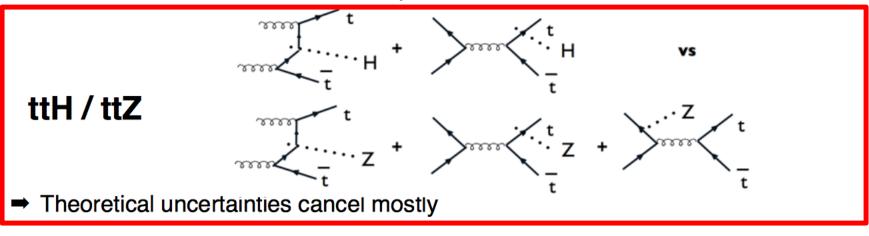
The Higgs Self Coupling!

Im(ø)

A key measurement for our understanding of the Higgs field potential!

There are several theoretical ideas to make progress to measure the Higgs potential in detail but more experimental studies are needed to see what realistically can be done at the FCC-hh

HH Production: Prospects


Higgs selfcouplings: pp→HH

- gg→HH (most promising?), qq→HHqq (via VBF)
- Reference benchmark process: $HH \rightarrow bb \gamma\gamma$
- Goal: 5% (or better) precision for SM selfcoupling

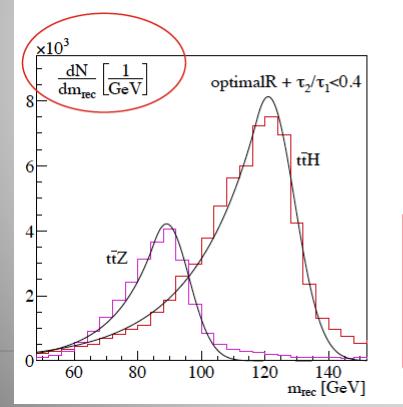
ΗΗ bbγ		Barr,Dolan,Englert,Lima, Spannowsky JHEP 1502 (2015) 016	Contino, Azatov, Panico, Son arXiv:1502.00539	He, Ren Yao arXiv:1506.03302
FCC ₀ 3/ab	@100TeV	30~40%	30%	15%
FCC ₀ 30/a	@100TeV b	10%	10%	5%
5	S/\sqrt{B}	8.4	15.2	16.5
Deta	ails	$ \begin{array}{l} \checkmark \lambda_{HHH} \text{ modification only} \\ \checkmark c \rightarrow b \ \& \ j \rightarrow \gamma \text{ included} \\ \checkmark \text{Background systematics} \\ \circ b \overline{b} \gamma \gamma \text{ not matched} \\ \checkmark m_{\gamma\gamma} = 125 \pm 1 \text{ GeV} \end{array} $	 ✓ Full EFT approach No c → b & j → γ ✓ Marginalized ✓ b b γγ matched ✓ $m_{\gamma\gamma} = 125 \pm 5 \text{ GeV}$ ✓ Jet /W_{had} veto 	 ✓ λ_{HHH} modification only ✓ c → b & j → γ included ○ No marginalization ✓ b bγγ matched ✓ m_{γγ} = 125 ± 3 GeV

Work in progress to compare studies, harmonize performance assumptions, optimize, etc ⇒ ideal benchmarking framework

Study of ttH

- PDF (CTEQ 6.6) ± 0.5%
- Missing higher orders ± 1.2%
- Complementarity with FCC-ee program

➡ Opens the possibility to measure top-Yukawa coupling with percent level precision


➡ More studies are needed to verify that < 1% level target can be reached

Study of ttH

	$\sigma(tar{t}H)[{ m pb}]$	$\sigma(t\bar{t}Z)[{ m pb}]$	$rac{\sigma(tar{t}H)}{\sigma(tar{t}Z)}$	
$13 { m TeV}$	$0.475^{+5.79\%}_{-9.04\%}{}^{+3.33\%}_{-3.08\%}$	$0.785^{+9.81\%+3.27\%}_{-11.2\%-3.12\%}$	$0.606^{+2.45\%+0.525\%}_{-3.66\%-0.319\%}$	
$100 { m TeV}$	$33.9^{+7.06\%+2.17\%}_{-8.29\%-2.18\%}$	$57.9^{+8.93\%+2.24\%}_{-9.46\%-2.43\%}$	$0.585^{+1.29\%+0.314\%}_{-2.02\%-0.147\%}$	Scale

Scale + PDF uncert.

$(1) (\Delta (\Delta n T C) (M / / 1) (\Delta n + T = (\Delta / 1) = (\Delta T C)$			$H\to 2\ell 2\nu$	
	$2.6 \cdot 10^4$	$4.6\cdot10^5$	$2.0\cdot10^6$	$1.2\cdot 10^8$

Top fat C/A jet(s) with R = 1.2, |y| < 2.5, and $p_{T,j} > 200$ GeV

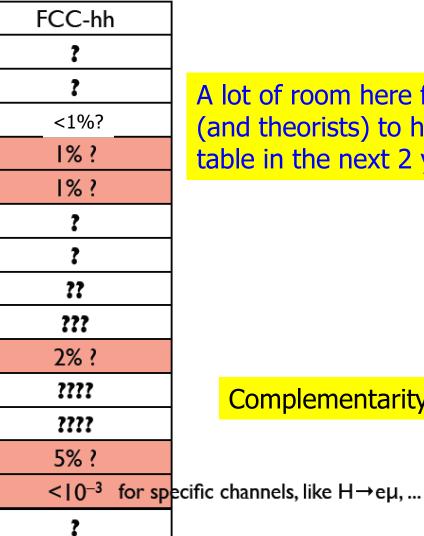
I% precision on ytop within reach (assuming B(H→bb) known)

arXiv:1507.08169

Rare Processes: Higgs to µµ

Example: $H \rightarrow \mu \mu$ statistical precision vs $p_T^{min}(\mu)$ vs $\Delta m_{\mu\mu}$ resolution (Bkg=off-shell DY)

$\sqrt{B/S}$ for 10ab ⁻¹		pt H min 30	50	100	150	200	LO only, no K factors
pt mu min	20.00	0.141E-01	0.160E-01	0.185E-01	0.197E-01	0.206E-01	
	30.00	0.149E-01	0.170E-01	0.193E-01	0.201E-01	0.209E-01	
	40.00	0.165E-01	0.185E-01	0.201E-01	0.206E-01	0.212E-01	
	50.00	0.194E-01	0.204E-01	0.209E-01	0.213E-01	0.218E-01	$\Delta m_{\mu\mu}$ = ± 2.5 GeV
	75.00	0.235E-01	0.235E-01	0.234E-01	0.232E-01	0.233E-01	
	100.00	0.254E-01	0.254E-01	0.254E-01	0.254E-01	0.252E-01	
$\sqrt{B/S}$ for I	0ab ⁻¹	pt H min					
pt mu min	20.00	0.902E-02	0.102E-01	0.119E-01	0.128E-01	0.135E-01	
	30.00	0.953E-02	0.109E-01	0.124E-01	0.130E-01	0.137E-01	
	40.00	0.105E-01	0.119E-01	0.129E-01	0.134E-01	0.139E-01	$\Delta m_{\mu\mu} = \pm I \text{ GeV}$
	50.00	0.124E-01	0.131E-01	0.135E-01	0.139E-01	0.143E-01	μμ
	75.00	0.153E-01	0.153E-01	0.153E-01	0.152E-01	0.153E-01	
	100.00	0.168E-01	0.168E-01	0.168E-01	0.168E-01	0.167E-01	

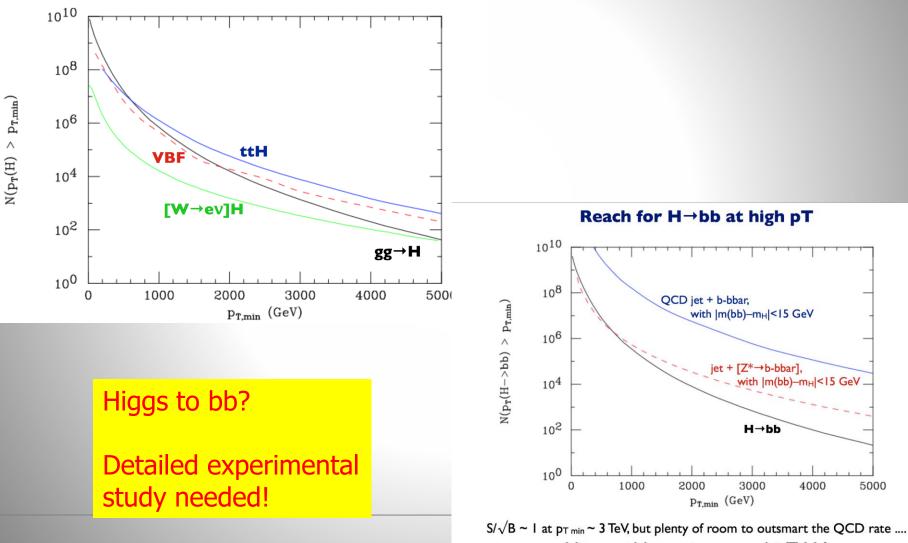

I % level measurement of B(H \rightarrow µµ)/B(H \rightarrow YY)?

Similar numbers for $(H \rightarrow Z\gamma)$...

Higgs Precision

work to do: complete the table!

		_	
ghxy	FCC-ee		
ZZ	0.15%	ſ	
\sim	0.19%	Ī	
ΥY	I.5%	Ī	
Zγ			
tt			
bb	0.42%		
τт	0.54%	Ī	
сс	0.71%	Ī	
SS	H→Vγ, in progr.	Ī	
μμ	6.4%		
uu,dd	H→Vγ, in progr.	Ī	
ee	e⁺e-→H, in progr.	Ī	
HH		Ī	
BR_{exo}	0.45%		
Γ_{tot}	١%	Ī	



A lot of room here for experimentalists (and theorists) to help us fill this table in the next 2 years...

Complementarity with the FCC-ee

High P_T Higgs Production

Large rates of high p_T produced Higgses at 100 TeV!

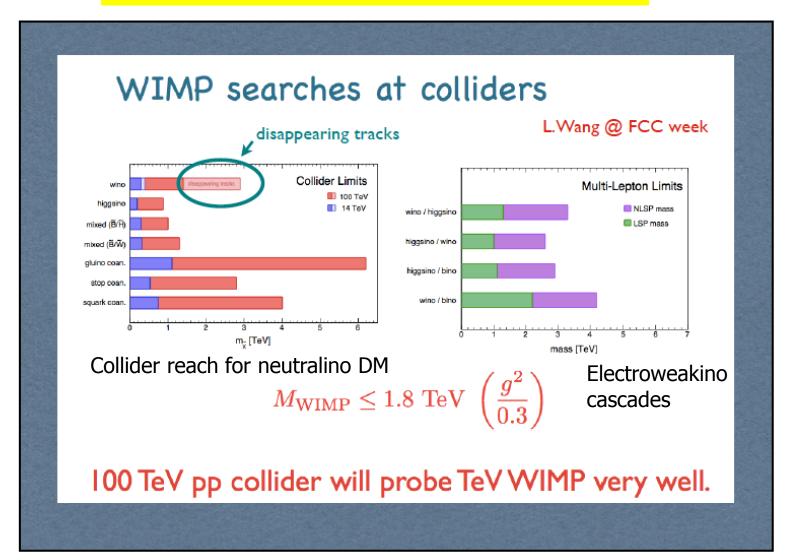
Higgs \rightarrow bb tagging at multi-TeV ?

Dark Matter

Dark Matter

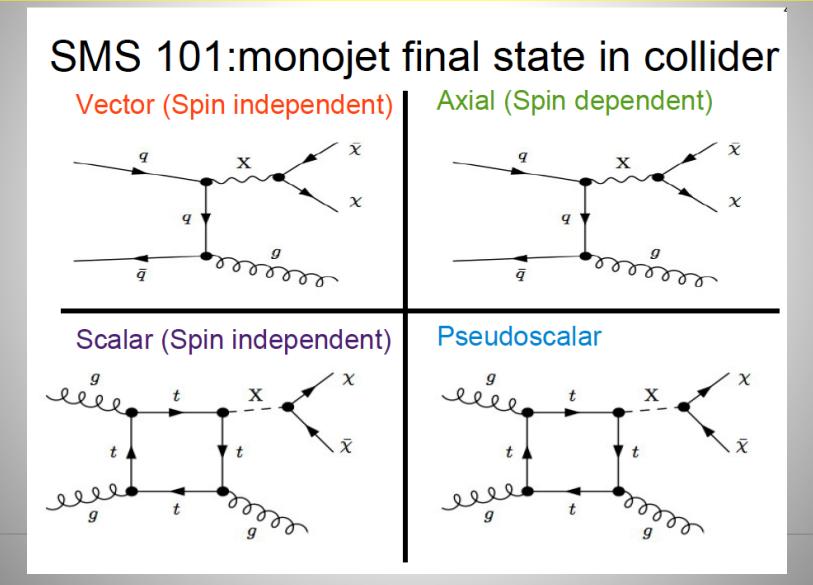
Dark Matter

M. Mangano


For ~complete discussion, see "Dark Matter at a future hadron collider" Workshop,

FNAL Dec 4-6, http://indico.cern.ch/event/445743/

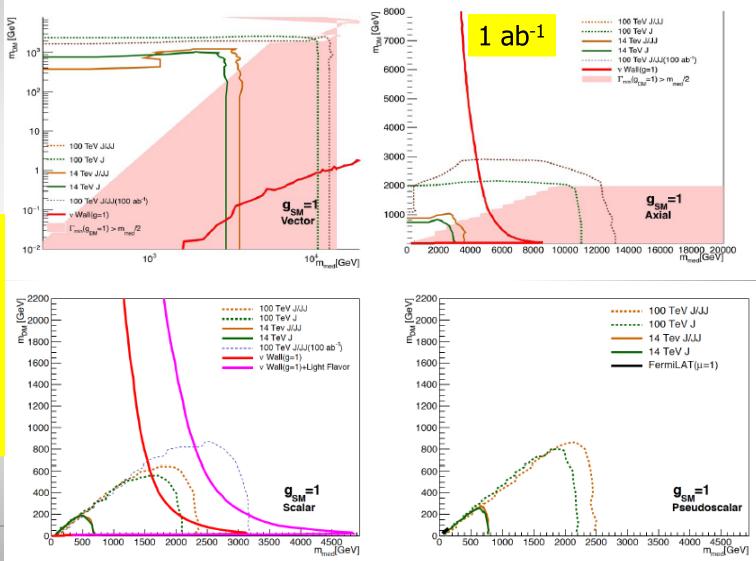
- DM could be explained by BSM models that would leave no signature at any future collider (e.g. axions).
- More in general, no experiment can guarantee an answer to the question "what is DM?"
- Scenarios in which DM is a WIMP are however compelling and theoretically justified
- We would like to understand whether a future collider can answer more specific questions, such as:
 - do WIMPS contribute to DM?
 - can WIMPS, detectable in direct and indirect (DM annihilation) experiments, be discovered at future colliders?
 - what are the opportunities w.r.t. new DM scenarios (e.g. interacting DM, asymmetric DM,)?


Dark Matter @FCC-hh

Dark Matter Searches within SUSY Scenarios

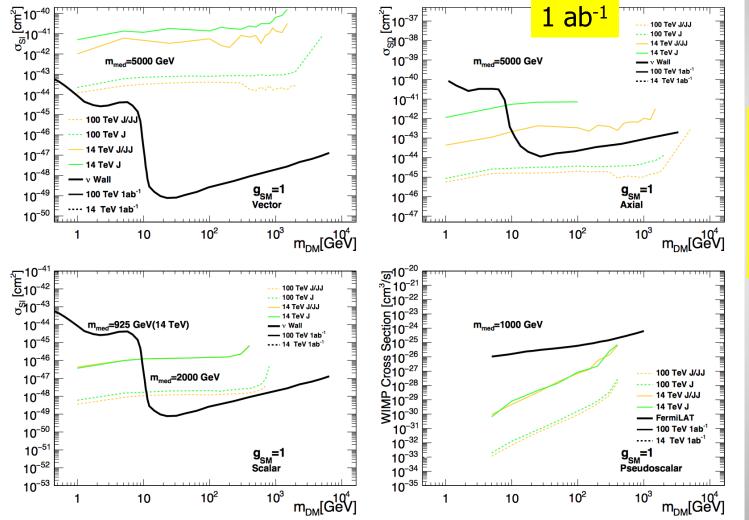
"Modern" Collider Dark Matter Studies

Use simplified models representing DM production via exchanged mediators



Dark Matter Study Results

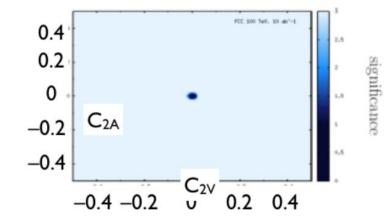
Results of the monojet (J) and multi-jet(JJ) study: SMS presentation


Breaking through the neutrino wall!!'

Going beyond the direct search experimental sensitivity

Dark Matter Study Results

Most elaborate study to date ->arXiv:1509.02904 DM plot presentation


monojet (J) and multi-jet (JJ) analyses combined

Breaking through the neutrino wall!

Precision Measurements Examples

Potential for Top EWK Couplings

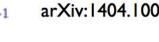
Top EW couplings at FCC-hh

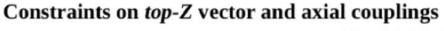
Constraints on top-Z weak dipole moments

[Röntsch, Schulze]

ttbar + Z

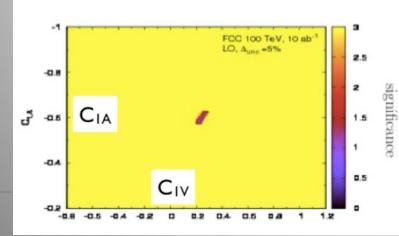
ttbar + Z

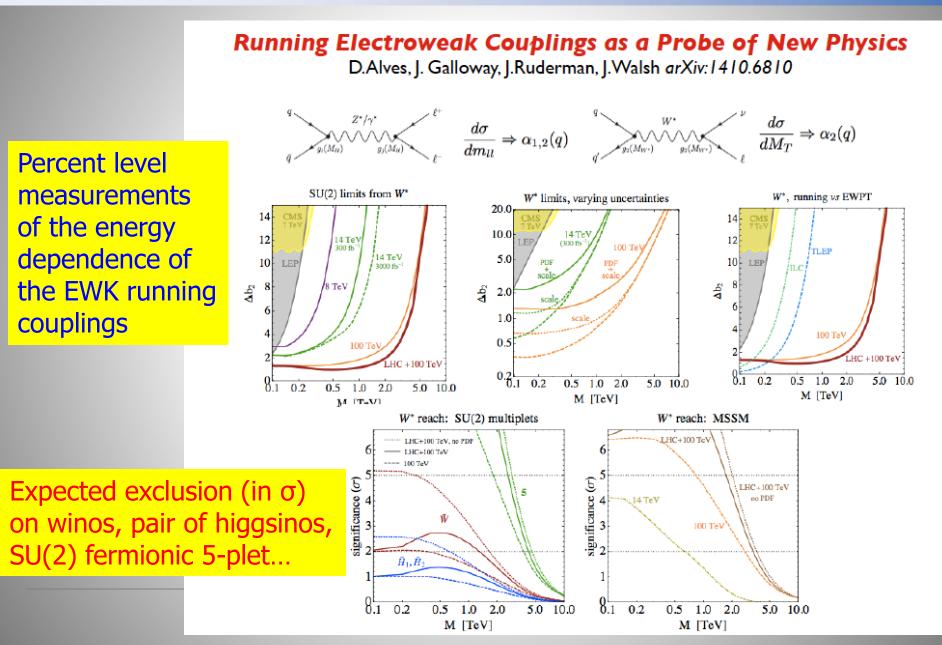

FCC 100 TeV, 10 ab⁻¹


scale+pdfs: ± 5 %

FCC 100 TeV, 10 ab⁻¹

arXiv:1501.05939 arXiv:1404.1005


scale+pdfs: ± 5 %



[Röntsch, Schulze]

arXiv:1501.05939 arXiv:1404.1005

Precision Probes

Inclusive Top Quark Production

Inclusive top quark production

• Top quark production $\sigma_{100 \text{ TeV}}$ (tt)~30 nb ~ 30 x $\sigma_{14 \text{ TeV}}$ (tt)

LO (CT14lo): sigma_tot = 21.7 + 4.8 (22 %) - 3.6 (17 %) [nb]. NLO (CT14nlo): sigma_tot = 32.1 + 3.6 (11 %) - 3.3 (10 %) [nb]. NNLO (CT14nnlo): sigma_tot = 34.7 + 1.0 (2.9 %) - 1.6 (4.8 %) [nb]. NNLO (NNPDF30_nnlo_as_0118): sigma_tot = 34.8 + 1.0 (2.9 %) - 1.6 (4.7 %) [nb]. Mitov et al

- \Rightarrow about 10¹² top quarks produced in 10 ab⁻¹
 - rare and forbidden top decays
 - 10¹² fully inclusive W decays, triggerable by "the other W"
 - rare and forbidden W decays
 - 3 10¹¹ W→charm decays
 - I0¹¹ W→tau decays
 - 10¹² fully charge-tagged b hadrons

Other Topics Under Study

Only a limited number of topics were discussed

- EWK radiation of W's and opportunities
- New high mass scalar resonance sensitivity
- Production of exotic coloured states
- Production of heavy leptons
- Flavor physics opportunities
- Quadruple Higgs production and quartic couplings
- BSM Higgs searches
- EW interactions at multi-TeV (eg WW scattering)
- Coloured and neutral naturalness
- Composite Higgs, twin-Higgs... models
- Precise QCD measurements

Lots of opportunities for studies

Conclusion

- The discovery of a new scalar boson has triggered a concerted effort and study for next accelerators
- A study on the physics potential for a 100 TeV pp accelerator (FCC-hh) is ongoing. More experimental studies would be welcome. Report planned for 2018
- Such a machine will have huge event rate and high mass reach for direct new particle production.
- Detailed Higgs studies can be made eg: HH production, rare Higgs decays, new high mass Higgses, ttH, etc. Complementary to an FCC-ee
- Extend the reach for new particles to ~ 10-50 TeV
- There is lots of room for blue sky thinking/ideas for measurements and experiments at such a machine!!

To follow FCC-hh physics activities

- Register with the FCC-hh mailing list for announcements:
 - <u>http://simba3.web.cern.ch/simba3/SelfSubscription.aspx?groupName=fcc-experiments-hadron</u>
- Check agendas and contents of previous events at the following indico categories:
 - Informal meetings of all physics subgroups (SM, Higgs, BSM):
 - https://indico.cern.ch/category/6067/
 - Workshops
 - https://indico.cern.ch/category/6071/
 - <u>Physics with injectors:</u>
 - https://indico.cern.ch/category/6070/
 - <u>Heavy ion physics:</u>
 - https://indico.cern.ch/category/6068/
 - Detector subgroup:
 - https://indico.cern.ch/category/6069/
 - <u>Detector magnets subgroup:</u>
 - https://indico.cern.ch/category/6244/
 - <u>Software group (common with FCC-ee and FCC-eh):</u>
 - https://indico.cern.ch/category/5666/

Backup