

SIMULATION STUDIES

[Accelerator \& Detector]

Ercan Piliçer on behalf of Uludag University Study Group

CONTENTS

Accelerator \& Detector studies for ;
$>$ e- Gun \& Dump in TARLA
Ayşegul Uşun, İlhan Tapan, Ercan Piliçer, et al.
Particle Factory in TAC
Fatma Koçak, Adnan Killç, Ilhan Tapan, Belgin Piliçer, Ercan Piliçer, et al.

Calorimeters for LHeC
Fatma Koçak, Adnan Kilıç, Ilhan Tapan, Ercan Piliçer, Peter Kostka, et al.
$>$ Muon Background in CLIC
Belgin Piliçer*, İhan Tapan, Helmut Burkhardt, Lau Gatignon, et al.
$>$ Spin Transport in CLIC
Ayşegul Uşun*, İlhan Tapan, Rogelio Thomas, et al.

Penning transfer simulations for RD51
Özkan Şahin, Yalçın Kalkan, Ilhan Tapan, Rob Veenhof
$>$ Summary \& Remarks

e^{-}Gun \& Dump in TARLA

TARLA (Turkish Acceleration and Radiation Laboratory at Ankara) Electrons with the energy of $15-40 \mathrm{MeV}$ Free Electrons Lasers with wavelength of $2-250$ um

Calculation of radiation levels around thermo ionic electron gun by using FLUKA
e-Gun parameters: $250 \mathrm{keV}, 1 \mathrm{~mA}, 80 \mathrm{pC}, 13 \mathrm{MHz}$

Dose-Eq (uSv/hour)

e- Gun \& Dump in TARLA

Design studies to dump electrons at the end of linac, by using FLUKA

Beam parameters; 50 MeV , $80 \mathrm{pC}, 13 \mathrm{MHz}, 1 \mathrm{~mA}$, $40 \mathrm{MW}, 2-5 \mathrm{~mm}$

ELBE

Graphit block Stainless stell vessel Water cooled Surrounded by iron

Depolanan Enerji [Joule/cm ${ }^{3} /$ demet]

Foton yogunlugu [$\gamma / \mathrm{cm}^{3} /$ demet]

Particle Factory in TAC

An electron-positron collider as a "super charm factory"

A 1 GeV electron linac and a 3.56 GeV positron ring for linac on ring type collisions and a dedicated detector "TAC-PF"
$\mathrm{e}^{-\mathrm{e}^{+}}$-> Ψ-> $\mathrm{D}^{+} \mathrm{D}^{-} / \mathrm{D}^{0} \mathrm{D}^{0}$ bar
$D \sim 10^{3} \mathrm{M} /$ year @ $L \sim 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$

$e^{-} e^{+}->\Psi->D^{+} D^{-} / D^{0} D^{0} \text { bar }$		
Parameter	Positron ring	Electron ER
Positron Beam energy (GeV)	3.56	1
Number of positron per bunch (10^{11})	2	0.2
Beta Functions at IP $\beta_{\mathrm{x}} / \beta_{\mathrm{y}}(\mathrm{mm})$	80/5	80/5
	111/0.36	31/0.1
$\sigma_{\mathrm{x}} / \sigma_{\mathrm{y}}(\mu \mathrm{m})$	36/0.5	36/0.5
$\sigma_{\mathrm{z}}(\mathrm{mm})$	5	5
Beam -beam tune shift ($\xi_{\mathrm{x}} / \xi_{\mathrm{y}}$)	0.012/0.13	
Energy loss/Turn (MeV)	0.7	
Number of bunches	300	
Circumference (m)	600	
Beam Current (A)	4.8	0.48
Momentum Acceptence (\%)	1	
Luminosity ($\mathrm{cm}^{-2} \mathrm{~s}^{-1}$)	1.4×10^{35}	

Particle Factory in TAC [Tracker]

Two main parameters contribute on transverse momentum resolution;

First term , contribution from measurement error by means of trajectory uncertainties define "Sagitta", thus depends on tracker geometry

Second term, multiple scattering contribution to momentum uncertainty, thus material dependence

Particle Factory in TAC [Tracker]

Sagitta measurement error variation with momentum

Relative momentum resolution variation with momentum

Particle Detectors

At low momentum, momentum resolution limited by MS in tracker material.
I.Tapan and B.Pilicer, Published in NIMA 765 (2014) 240-243

	Spatial resolution (\%)	MS (\%)	$\sigma_{p t} / p_{t}$
e^{+}	0.46	1.67	1.74
π^{+}	0.47	1.50	1.57
$\mathrm{~K}^{+}$	0.53	1.69	1.77

Energy resolution is about 5\%, improving with eta

Particle Factory in TAC [Tracker]

Calculation of "Impact parameters resolutions" with FLUKA and tkLayout (software package for tracker layouts developed by CMS group)
$\mathrm{a}_{0} \quad$ Transverse impact parameter
$\mathrm{z}_{0} \quad$ Longitudinal impact parameter
Φ_{0} Azimuth angle
Θ Polar angle

Particle Factory in TAC [Calorimeter]

$\frac{\sigma(E)}{E}=\frac{a}{\sqrt{E}} \oplus b \oplus \frac{c}{E}$
$a=\sqrt{a_{\text {lateral }}{ }^{2}+a_{p e}{ }^{2}} \quad a_{p e}=\sqrt{\frac{F}{N_{p e}}}$

$$
N_{p e}=N_{p h} \times Q E
$$

a : stochastic term (photoelectron statistics, shower fluctuations, lateral leakage)
b : constant term (non-uniformities, longitudinal leakage)
c : electronic noise term
E : the energy of the incident particle
$a_{\text {lateral }}$: Event to event fluctuations in the lateral shower containment
$a_{p e}$: Photoelectron statistics contribution from photodetector
F : Excess noise, avalanche gain fluctutation in APD
$N_{p h}$: Number of the incident photons collected by the PD

Particle Factory in TAC [Calorimeter]

Crystals, $\mathrm{PbWO}_{4} \sim 22.5 \mathrm{X}_{0}$ and $\mathrm{CsI}(\mathrm{TI}) \sim 16.2 \mathrm{X}_{0}$, studied for TAC-PF ECAL. Photodiodes, Hamamatsu S8664-55 APD and S2744 PD.

Energy deposition spectra is a Novosibirsk function having a tail towards lower energies

$$
f(x)=A \cdot \exp \left[-0.5 \cdot\left(\frac{\ln ^{2}\left[1+\Lambda \cdot \tau \cdot\left(E-E_{0}\right)\right]}{\tau^{2}}+\tau^{2}\right)\right]
$$

Particle Factory in TAC [Full Simulation]

LHeC Detector

DD4hep, (Detector Description for HEP). full detector simulation

LHeC Detector [Barrel Calorimeter]

EMC, Pb-LAr (2.2+3.8 mm thick, like ATLAS) Pb-Scint ($8.5+4 \mathrm{~mm}$ mm thick), no cryogenics

HAC, Tile calorimeter (like ATLAS)

500 cm

EMC+Dipole+HAC
HAC

Aluminum/Dipole
EMC

20 GeV e-

Tile Rows	Height of Tiles in Radial Direction	Scintillator Thickness
$1-3$	97 mm	3 mm
$4-6$	127 mm	3 mm
$7-11$	147 mm	3 mm
x-depth	1407 mm	

LHeC Collaboration Published in JPG Vol:39 No:7 (2012)

LHeC Detector [Endcap Calorimeters]

CLIC BDS

CLIC Beam Delivery System

Beam transfer line from main linac to IR (interaction region).

Muon Background in CLIC BDS

Accelerator beam line design and particle tracking with BDSIM.

axe axo

GEANT4 base particle transport and analysis interface with ROOT.

Beam sizes for each elements

Good agreement between BDSIM and MAD-X.

Muon Background in CLIC BDS

\rightarrow Indirect contribution

- $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow$ hadrons

Contribution from decay of hadrons to muons and energetic photons.

Muon Background in CLIC BDS

Muon trajectories in the tunnel through the IR

Magnetized muon sweeper/shielding to prevent muons reaching to IR (as background) They have been placed available drift space in betatron collimation section
B. Pilicer et al., Published in IPAC 2015
B. Pilicer et. al. Published in LCWS15

Spin Transport in CLIC BDS

Numerical spin tracking through BDS done with BMAD to have particle dynamics.
Longitudinal electron beam polarization values @ IP were estimated 80% polarized electron beam.

The electron beam was sent with different misalignment values to the BDS .
The beam sizes (σ_{x}, σ_{y}) and the tilt values on axes ($\sigma_{x^{\prime}}, \sigma_{y^{\prime}}$) were calculated.

The polarization values at the IP were decreased up to 0.1% with applied misalignments of $\mathbf{7} \sigma_{\mathrm{x}}$ and $\mathbf{2} \sigma_{\mathrm{y}} \mathbf{6} \sigma_{\mathrm{x}^{\prime}}$ and $\mathbf{7} \sigma_{\mathrm{y}^{\prime}}$

Spin Transport in CLIC BDS

The misalignment effect on polarization was also investigated for the quadrupole magnets. The 70 quadrupoles on the beamline were misaligned randomly at around 10 um and the beam was sent to the BDS without any misalignment.

Before misalignment

After Misalignment

The changes of longitudinal polarization without applied misalignment and after applied misalignment on all quadrupoles in CLIC BDS

Spin Transport in CLIC BDS

The changes of x and y components of polarization before and after applied misalignment to the quadrupoles

Penning Transfer Simulations for RD51

In addition to direct ionising collisions, there may be many non-ionising interactions in which some fraction of the energy is spent on the creation of short or long lived excited states. If the energy stored in excited noble gas atoms is used efficiently for additional ionisations.
Excitation and ionization levels for Argon and Methane
I.P $=15.8 \mathrm{eV}$ ARGON
higher: $<$ ion en.
3p $p^{5} 3 \mathrm{~d}: \sim 13.9 \mathrm{eV}$
3p $4 \mathrm{p}: \sim 13.0 \mathrm{eV}$
3 $\mathrm{p}^{5} 4 \mathrm{~s}:<12.0 \mathrm{eV}$

Contributions to the transfer rates

Time evolution of Penning transfer

Summary \& Remarks

$>$ Our group's experiences on the simulations of both accelerator and detector sides have been presented
$>$ Different aspects of accelerator, like machine detector interface, are of interests
$>$ Different aspects of detector, like tracker and calorimeter resolutions, are of interests
$>$ Many papers, talks and notes relevant to those studies are present
$>$ Two relevant PhD thesis are on the way of finalizing
$>$ An ambitious group of experienced researchers ready to take part in FCC studies

