

HL-LHC 7 TeV instabilities: impedance model with crab cavities – continued

Kevin Li, N. Biancacci, E. Metral, B. Salvant

New HOM wake tables

We extend the previous wake table by the full table of specified HOMs

HL-LHC impedance webpage

IS

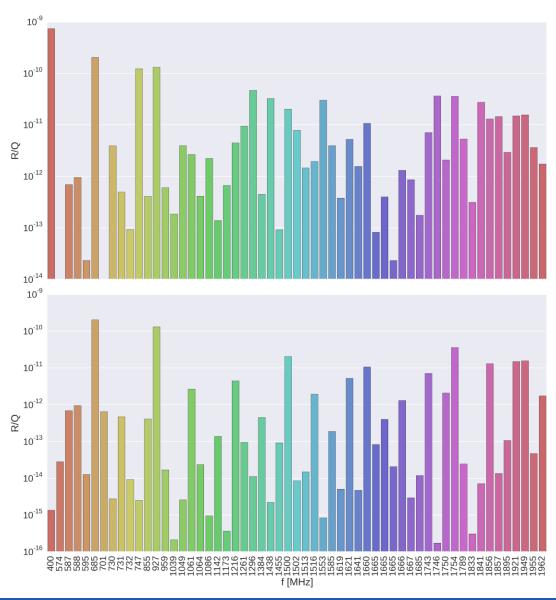
Current impedance model

Current impedance model:

- · Contributions taken into account, with the corresponding parameters used:
 - o Collimators: parameters, settings and beta functions (from R. Bruce),
 - Resistive-wall impedance from beam-screens and warm vacuum pipe: parameters, weld factor applied to RW impedance for the new triplets beam screens (from C. Zannini), weld factor applied to RW impedance for the other beam screens (from C. Zannini),
 - · Broad-band contributions in the new triplets: parameters for resonator models.
 - Higher order modes (resonator models): general parameters, HOMs for the new ATLAS & CMS cavities (from R. Wanzenberg and O. Zagorodnova), HOMs for ALICE & LHCb cavity (from B. Salvant), HOMs for RF cavities (from CERN note SL 98-008),
 - · Pumping holes in the beam screens: parameters,
 - 16 crab cavities:

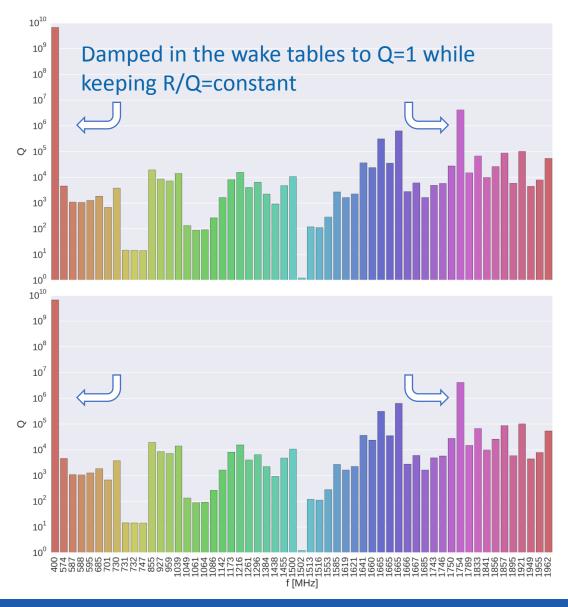
Туре	before revision	after revision	comparison
ODU crab cavities	HOM table	HOM table (edms page)	<u>R</u> , <u>R/Q</u> , <u>Q</u>
RFD crab cavities	HOM table	HOM table (edms page)	<u>R</u> , <u>R/Q</u> , <u>Q</u>

NB:


- the tables account for longitudinal and dipolar modes (R, Q, f).
- the shunt impedance is divided by half since we have crabs kicking in both H and V planes and the HOMs would get exchanged. Therefore having N crab cavities we have N/2 H modes and N/2 V modes which is the same as having N*(H+V)/2 modes.
- the fundamental mode at 400 MHz is feedback-ed.
- the updated HOMs values are rearranged from the EDMS files. For the SLAC cavity we assumed that the fundamental mode is unchanged.
- Wire compensator (embedded in a tertiary collimator cf. R. Steinhagen): parameters.

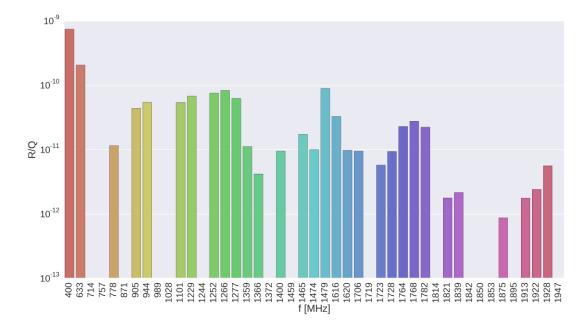
BNL

R/Q



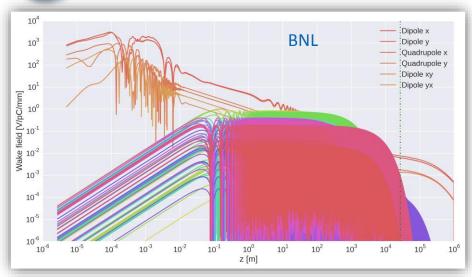
BNL

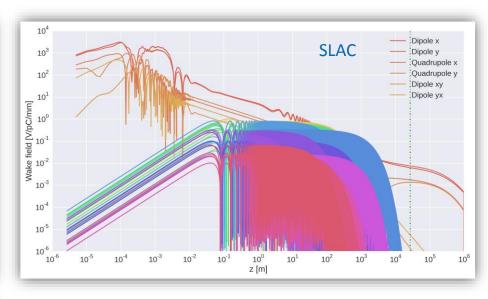
Q

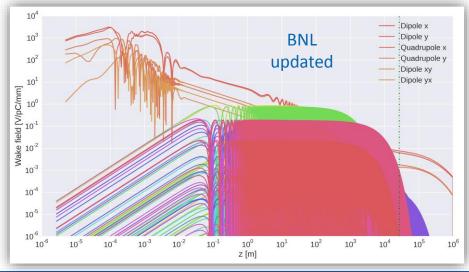


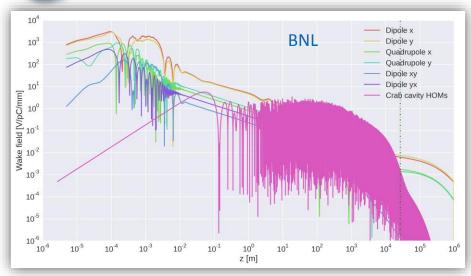
SLAC

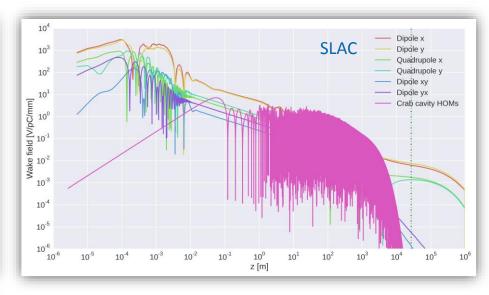
R/Q

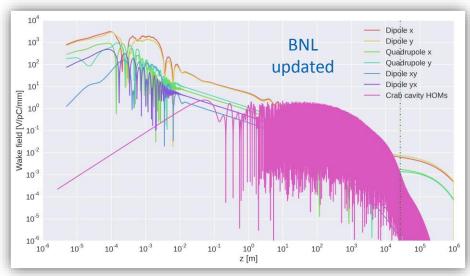

SLAC


Q


100° 200 100° 200 100° 3







Beam dynamics simulations

Macroparticles	1 000 000	
Slices	500	
Turns	300 000	
Damping time	50 turns	
Energy	7 TeV	
α	3.225e-4	
Q_x	62.31	
Q_y	60.32	
eta_x	70 m	
eta_y	70 m	
Q_x'	0	
Q_y'	0	
$arepsilon_x$	2.5 μm	
$arepsilon_y$	2.5 μm	
σ_z	8.1 cm	

- Use these 4 wake tables together with the current HL-LHC impedance model (HL-LHC_15cm_7TeV_5umMo+MoC_IP7_TCT5)
- Scan
 - Intensity [2.3e11, 3e11, 4e11, 5e11]
 - Chroma [-20...20]
 - Damper gain [25, 50, 250, 5000]
- Study & compare instability rise times

Conclusions

- We prepared a set of wake tables taking into account the most recent full HOM model for the crab cavities.
- These wake tables will be used in conjunction with the HL=-LHC impedance model for beam dynamics simulations.

