HNLS AND DARK MATTER

Alexey Boyarsky

Universiteit Leiden

6th SHiP collaboration meeting October 10, 2015

Massive neutral particles fill the Universe

Expected:

Expected: $v(R) \propto \frac{1}{\sqrt{R}}$ **Observed:** $v(R) \approx \text{const}$

mass_{cluster} = $\sum_{\text{mass}_{galaxies}}$ **Observed:** 10² times more mass confining ionized gas

Lensing signal (direct mass measurement) confirms other observations

Jeans instability turned tiny density fluctuations into all visible structures

Rotation curves of spiral galaxies

Intracluster gas

Cluster Abell 2029. Credit: X-ray: NASA/CXC/UCI/A.Lewis et al. Optical: Pal.Obs. DSS

Dark Matter $\sim 85\%$ Intracluster gas $\sim 15\%$ DM in clusterGalaxies $\sim 1\%$ Baryons in cluster

Temperature of the intra-cluster gas: $1 - 10 \text{ keV} \sim 10^7 - 10^8 \text{ K}$

Gravitational lensing

Alexey Boyarsky

Cosmological evidence for dark matter

- We see the structures in the Universe when it was only **380000** years old (encoded in the anisotropies of the temperature of the cosmic microwave background)
- All the today's structures are produced from tiny density fluctuations due to gravitational Jeans instability

- At CMB $\delta \rho / \rho \sim 10^{-5}$, then grow $\delta \rho / \rho \sim a$ (matter domination)
- $\frac{a_{today}}{a_{dec}} = 1 + z_{dec} \sim 10^3$ Not enough!

Some matter-like substance decoupled from photon gas should have been present in the Universe at the time of decoupling

Is this neutrino Dark Matter?

- In 1979 when S. Tremaine and J. Gunn published in Phys. Rev. Lett. a paper "Dynamical Role of Light Neutral Leptons in Cosmology"
 - The smaller is the mass of Dark matter particle, the larger is the number of particles in an object with the mass M_{gal}
 - Average phase-space density of any fermionic DM should be smaller than density of degenerate Fermi gas
- ⇒ If dark matter is made of fermions its mass is bounded from below:

$$\frac{M_{\text{gal}}}{\frac{4\pi}{3}R_{\text{gal}}^3}\frac{1}{\frac{4\pi}{3}v_\infty^3} \le \frac{2m_{\text{DM}}^4}{(2\pi\hbar)^3}$$

 Objects with highest phase-space density – dwarf spheroidal galaxies – lead to the lower bound on the fermionic DM mass

 $m_{\rm DM}\gtrsim 300-400~{\rm eV}$

Our paper [0808.3902]

Is this neutrino Dark Matter?

• However, if you compute contribution to DM density from massive active neutrinos ($m_{\nu} \leq \text{MeV}$), you get

$$\Omega_{\nu \text{ DM}} h^2 = \sum m_{\nu} \int \frac{d^3 k}{(2\pi)^3} \frac{1}{e^{\frac{k}{T}} + 1} = \left\lfloor \frac{\sum m_{\nu} [\text{eV}]}{94 \text{ eV}} \right\rfloor$$

- Using minimal mass of 300 eV you get $\Omega_{\text{DM}}h^2 \sim 3$ (wrong by about a factor of 30!)
- Sum of masses to have the correct abundance

$$\sum m_{\nu} \approx 11 \text{ eV}$$

Massive Standard Model neutrinos cannot be simultaneously "astrophysical" and "cosmological" dark matter: to account for the missing mass in galaxies **and** to contribute to the cosmological expansion

Today this is confirmed by CMB, LSS and neutrino experimental data

- Next blow to neutrino DM came around 1983–1985 when M. Davis, G. Efstathiou, C. Frenk, S. White, *et al.* "*Clustering in a neutrinodominated universe*"
- They argued that structure formation in the neutrino dominated Universe (with masses around 100 eV would be incompatible with the observations)

http://www.adsabs.harvard.edu/abs/1983ApJ...274L...1W

Abstract

Dark matter cannot be both **light** and **weakly interacting** at the same time

Two classes of alternatives:

Light	yet	super-weakly
interacting		

 Can be light (down to Tremaine-Gunn bound)

- Can be warm (born relativistic and cool down later)
- Can be decaying (stability is not required)

Heavy and therefore weakly interacting — WIMP

I shall not speak about it

SEARCHING FOR DECAYING DARK MATTER

• Two-body decay into two massless particles (DM $\rightarrow \gamma + \gamma$ or DM $\rightarrow \gamma + \nu$) \Rightarrow narrow decay line

$$E_{\gamma} = rac{1}{2}m_{\mathrm{DM}}c^2$$

- The width of the decay line is determined by **Doppler broadening**
- Typical virial velocities:
 - A dwarf satellite galaxy: $\sim 30\,\rm km/sec$
 - Milky Way or Andromeda-like galaxy: $\sim 200\,\rm km/sec$
 - Typical velocity in the galaxy cluster $\sim 1500\,\rm km/sec$
- Very characteristic signal: narrow line in all DM-dominated objects with $\frac{\Delta E}{E_{\gamma}} \sim \frac{v_{\rm vir}}{c} \sim 10^{-4} \div 10^{-2}$

Signal from different DM-dominated objects

Boyarsky et al PRĽ06

Boyarsky, Neronov, Ruchayskiy, Tkachev PRL'09

Why nearby objects?

DM **decay** signal from a galaxy

DM annihilation signal from a galaxy

For decaying dark matter astrophysical search is (almost) "direct detection" as any candidate line can be unambiguously checked (confirmed or ruled out) as DM decay line

Search for Dark Matter decays in X-rays

All types of **individual** objects/observations have been tried: galaxies (LMC, Ursa Minor, Draco, Milky Way, M31, M33,...); galaxy clusters (Bullet cluster; Coma, Virgo, ...) with all the X-ray instruments

Alexey Boyarsky

Improvements?

- Individual observation: 50-100 ksec
- One year of XMM-Newton observational programme: 14 Msec
- Only 60-70% of exposure is used (cosmic flares contamination)
 Can we **stack** many different observations (correcting for redshift) in a hope of seeing a weak decay line?

Alexey Boyarsky

2006-2007

M31 (XMM) 2007, 2010

DECAYING DARK MATTER CANDIDATE

Detection of An Unidentified Emission Line

DETECTION OF AN UNIDENTIFIED EMISSION LINE IN THE STACKED X-RAY SPECTRUM OF GALAXY CLUSTERS

ESRA BULBUL^{1,2}, MAXIM MARKEVITCH², ADAM FOSTER¹, RANDALL K. SMITH¹ MICHAEL LOEWENSTEIN², AND SCOTT W. RANDALL¹ ¹ Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138. ² NASA Goddard Space Flight Center, Greenbelt, MD, USA. Submitted to ApJ, 2014 February 10

ApJ (2014) [1402.2301]

An unidentified line in X-ray spectra of the Andromeda galaxy and Perseus galaxy cluster

A. Boyarsky¹, O. Ruchayskiy², D. Iakubovskyi^{3,4} and J. Franse^{1,5}

¹Instituut-Lorentz for Theoretical Physics, Universiteit Leiden, Niels Bohrweg 2, Leiden, The Netherlands ²Ecole Polytechnique Fédérale de Lausanne, FSB/ITP/LPPC, BSP, CH-1015, Lausanne, Switzerland

PRL (2014) [1402.4119]

- Energy: 3.5 keV. Statistical error for line position $\sim 30 50$ eV.
- Lifetime: $\sim 10^{28}$ sec (uncertainty: factor ~ 3)
- Possible origin: decay $DM \rightarrow \gamma + \nu$ (fermion) or $DM \rightarrow \gamma + \gamma$ (boson)

Significance

Our Data

M31 galaxy	$\Delta \chi^2 = 13.0$	3.2σ for 2 d.o.f.
Perseus cluster (MOS)	$\Delta \chi^2 = 9.1$	2.5σ for 2 d.o.f.
Perseus cluster (PN)	$\Delta \chi^2 = 8.0$	2.4σ for 2 d.o.f.
Blank sky	No detection	
M31 + Perseus (MOS)	$\Delta \chi^2 = 25.9$	4.4σ for 3 d.o.f.

Global significance of detecting the same signal in 3 datasets: 4.8σ

Bulbul et al. 2014

73 clusters (XMM, MOS) 73 clusters (XMM, PN)	$\Delta \chi^2 = 22.8$ $\Delta \chi^2 = 13.9$	4.3σ for 2 d.o.f 3.3σ for 2 d.o.f
Perseus center (Chandra, ACIS-S) Perseus center (Chandra, ACIS-I)	$\Delta \chi^2 = 11.8$ $\Delta \chi^2 = 6.2$	3.0σ for 2 d.o.f. 2.5σ for 1 d.o.f.

Galactic center

More than 4σ statistical significance. Seen also by S. Riemer-Sorensen [1405.7943]; T. Jeltema & S. Profumo [1408.1699]

GC Line flux, 10⁻⁶ photons cm⁻² s⁻¹ 10 Perseus Bulbul et al. 120141 Bulbul et al. 120141 Stacked 0501 bound TDM= 15.6 × 1027 58C M31 1 Blank-sky 0.01 0.1 Projected DM mass density, M_{Sun}/pc^2

Warm Dark Matter?

- Particles are born relativistic \Rightarrow they do not cluster
- Relativistic particles free stream out of overdense regions and smooth primordial inhomogeneities

- Free-streaming scale:

$$\lambda_{FS}^{co} = \int_0^t \frac{v(t')dt'}{a(t')} = 1 \operatorname{Mpc}\left(\frac{\mathrm{keV}}{M_{\mathrm{sterile}}}\right)$$

Particle velocities means that warm dark matter has effective pressure that prevents small structure from collapsing

Suppression of power spectrum

DWARF GALAXIES (SMALL STRUCTURES INSIDE MILKY WAY)

Halo substructure in "cold" DM universe

COLD DM models predict millions of substructures within a galaxy like Milky Way

Only $\sim ~30\,$ are observed within our Galaxy. M. Geha 2010

Is small number of observed substructures due to dark matter free-streaming? Moore et al. (1999), Klypin et al. (1999) and many others

Halo substructure in "warm" DM universe

Aq-A-2 halo made of sterile neutrino DM (with

C. Frenk, T. Theuns, ...)

Simulated sterile neutrino DM halo is compatible with the Lyman- α forest data but provides a structure of Milky way-size halo different from CDM

Lyman- α forest data

Alexey Boyarsky

Lyman- α forest data

Viel et al. [1306.2314]

Large scales: no suppression Small scales: suppression inCDM-like spectrumthe power spectrum! WDM?!

Data prefers cold IGM medium around redshift $z = 5 \Rightarrow$ power spectrum suppression is due to **something else**?

A. Garzilli et al. [1510.*****]

DARK MATTER AND PARTICLE PHYSICS

Dark matter candidates

L.Roszkowski

HNL DARK MATTER

Oscillations \Rightarrow new particles!

Oscillations \Rightarrow new particles!

Right components of neutrinos?!

Properties of sterile neutrino

• This mixing strength or mixing angle is

$$\vartheta_{e,\mu,\tau}^2 \equiv \frac{|M_{\rm Dirac}|^2}{M_{\rm Majorana}^2} = \frac{\mathcal{M}_{\rm active}}{M_{\rm sterile}} \approx 5 \times 10^{-11} \left(\frac{1 \, {\rm GeV}}{M_{\rm sterile}}\right)$$

HNL dark matter properties

- HNL is decaying dark matter candidate: $N \rightarrow \nu + \gamma$
- Existing bounds on DM decay limit its parameter space

- Dotted line: lifetime equal to the lifetime of the Universe
- Dashed-dotted line: HNL contributes to neutrino mass matrix at the level Δm_{\odot}^2

HNL cannot be a dark matter candidate **and** contribute significantly to the neutrino masses

- Atmospheric and Solar neutrino mass splitting ⇒ need (at least) two sterile neutrino
- Are they Dark matter? ⇒ No way! Very short lifetime
- Third sterile neutrino? ⇒
 Yes! Great DM (its exact properties depend on two other sterile neutrinos)

Sterile neutrino is a viable dark matter candidate in a model with **at** least two other sterile neutrinos

• Once every $\sim 10^8 \div 10^{10}$ scatterings a sterile neutrino is created instead of the active one

Dodelson & Widrow'93: Hansen'00

- Its abundance slowly builds up but never reaches the Dolgov & equilibrium value
- The distribution of sterile neutrinos $f(p) \approx \frac{\theta^2}{e^{p/T_{\nu+1}}}$

Conversion of ν to N is enhanced whenever "levels" cross and virtual neutrino goes "on-shell" (analog of MSW effect but for active-sterile mixing)

Shi & Fuller [astroph/9810076]

Laine & Shaposhnikov [0804.4543]

Resonant enhancement

- In the presence of large lepton asymmetry the MSW resonance can take place and production of sterile neutrinos becomes much more effective
- The condition for resonance occurs only for specific values of momentum *p* and during limited period of time.

• For HNLs $p \gg M$ at production \Rightarrow HNL is warm dark matter

Sterile neutrino and 3.5 keV line

from PRL (2014)

Thermal history of the Universe

Magnetic fields make baryogenesis (around $T \sim 100$ GeV) and dark matter production (around $T \sim 100$ MeV) related and sourced by the same mechanism – generation of lepton asymmetry by out-of-equilibrium transitions of two sterile neutrinos with the masses $10 \text{ MeV} \lesssim M \lesssim 80 \text{ GeV}$

- Super-WIMP dark matter is a part of the paradigme about **feebly interacting** (*rather than heavy*) new physics.
- Super-WIMPs can be **light** (*e.g. keV scales*); can **decay** (*rather than annihilate*) and can be **warm** (*erasing primordial density perturbations*)
- Current status of warm dark matter searches: missing information about state of IGM at $z \sim 5$ can drastically change the situation: rule out WDM as an astrophysically interesting scenario or confirm existence of warm dark matter
- The searches for decaying dark matter are ongoing. Stay tuned!
- All the data looks consistent with a $\sim~7~{\rm keV}$ sterile neutrino produced in the model like $\nu{\rm MSM}$

THANK YOU FOR YOUR ATTENTION!

Constraints on HNL dark matter \Rightarrow constraints on the properties of N_2, N_3 from cosmology and astrophysics.

Sterile neutrino and 3.5 keV line

Ly- α bounds: Viel, Lesgourgues et al.'05-'06

Ly-α **in resonan case:** Boyarsky, Lesgourgues, Ruchayskiy. Viel '08 **X-rays: '05-'14**

Boyarsky, Ruchayskiy et al. Abazajian et al. Hansen et al. Watson et al. Kusenko, Lowenstein

Production: Laine & Shaposhnikov'08

from PRL (2014)

SHiP: Search for Hidden Particles

- Particle N₁ with the mass 7 keV is the dark matter
- Particles N_2 and N_3 with O(1) GeV mass are discovered by SHiP
- Their properties (mass/interaction strength) are related

Alexey Boyarsky

Data

	Our Data	
M31 galaxy	XMM-Newton, center & outskirts	
Perseus cluster	XMM-Newton, outskirts only	
Blank sky	XMM-Newton	

Bulbul et al. 2014

73 clusters	XMM-Newton, centers
	only. Up to $z = 0.35$,
	including Coma, Perseus
Perseus cluster	Chandra, center only
Virgo cluster	Chandra, center only

Position: 3.5 keV. Statistical error for line position ~ 30 eV. Systematics (~ 50 eV – between cameras, determination of known instrumental lines)

Lifetime: $\sim 10^{28}$ SeC (uncertainty $\mathcal{O}(10)$)

Perseus galaxy cluster (0.5/0.2 Msec)

Bulbul et al. took only 2 central XMM observation -14' around the cluster's center.

We took 16 observations **excluding** 2 central XMM observations to avoid modeling complicated central emission

Also Carlson et al.; Urban et al.

Andromeda galaxy

Andromeda galaxy (zoom 3-4 keV)

Redshift scaling

- All spectra blue-shifted in the reference frame of clusters (Bulbul et al.)
- For Perseus we detect its redshift ($z \approx 0.018$) at $\sim 2\sigma$ (Boyarsky et al.) position of the line has about 30 eV uncertainty

Surface brightness profile (Perseus)

PRL (2014) [1402.4119]

Surface brightness profile (Milky Way)?

No line is seen in 16 Msec observations of off-center Milky Way

CHECKING THE DARK MATTER ORIGIN OF THE LINE

Expect large signal from GC \rightarrow ``easy'' cross-check

