Measurement of angular and momentum distributions of charmed hadrons produced in p-Mo collisions

Giovanni De Lellis

The motivation is to reduce the uncertainty on the flux of particles originated from charmed hadrons: HNL and tau neutrinos, a significant fraction of the high energy (electron and muon) neutrinos in general

Charm production vs energy

Cacciari, Greco, Nason JHEP 9805 (1998) 007 Cacciari, Frixione, Nason JHEP 0103 (2001) 006

arXiv: 1504.04855 SHiP Physics Proposal

CERN LIBRARIES, GENEVA

CERN/SPSC/79-101 SPSC/P 129/S October 2, 1979

q

SUMMARY OF

PROPOSAL TO STUDY THE HADRONIC PRODUCTION AND THE PROPERTIES OF

NEW PARTICLES WITH A LIFE-TIME 10^{-13} s < τ < 10^{-10} s

USING LEBC-EHS

NA27 experiment

Amsterdam¹-Brussels²-CERN³-Madrid⁴-Mons⁵-Nijmegen⁶-Oxford⁷-Padova⁸-Paris⁹-Rome¹⁰-Rutherford¹¹-Serpukhov¹²-Stockholm¹³-Trieste¹⁴-Vienna¹⁵ Collaboration

- 400 GeV run by NA27, M. Aguilar-Benitez, et al., Z. Phys. C 40 (1988) 321.
- A total of 98 neutral D0 and 119 charged hadrons (including Λ_c) were found

Impact on v_{τ} YIELD

$$N_{
u_{ au}+ar{
u}_{ au}}=4N_{p} \frac{\sigma_{car{c}}}{\sigma_{pN}} f_{D_{s}} Br(D_{s}
ightarrow au)=2.85 imes 10^{-5} N_{p}=5.7 imes 10^{15}$$
 $\sigma_{car{c}}=18.1\pm1.7~\mu{
m barn}$ $Br(D_{s}
ightarrow au)=(5.54\pm0.24)\%~PDG~2014$ $Physics~Reports~433~(2006)~127$ $P_{D_{s}}=(7.7\pm0.6^{+0.5}_{-0.4})\%~JHEP~1309~(2013)~058$ $\sigma_{car{c}}\propto A_{0.71}$

Branching ratio Ds → tau

 $\Gamma(\tau^+\nu_{ au})/\Gamma_{ ext{total}}$ See the note on "Decay Constants of Charged Pseudoscalar Mesons" above.

VALUE (units 10^{-2}) DOCUMENT ID TECN COMMENT 5.55 ± 0.24 OUR AVERAGE $5.70\pm0.21^{+0.31}_{-0.30}$ ¹ ZUPANC 13 BELL e^+e^- at $\Upsilon(4S)$, $\Upsilon(5S)$ 2.2k ² DEL-AMO-SA..10J BABR $e^- \overline{\nu}_e \nu_{\tau}$, $\mu^- \overline{\nu}_{\mu} \nu_{\tau}$ 748 ± 53 $4.96\pm0.37\pm0.57$ ³ ALEXANDER 09 CLEO $\tau^+ \rightarrow \pi^+ \overline{\nu}_{\tau}$ $6.42 \pm 0.81 \pm 0.18$ 126 ± 16 3 NAIK 09A CLEO $\tau^+ \rightarrow \rho^+ \overline{\nu}_{\tau}$ $5.52 \pm 0.57 \pm 0.21$ 155 ± 17 3 ONYISI 09 CLEO $\tau^+ \rightarrow e^+ \nu_e^{\prime} \overline{\nu}_{\tau}$ $5.30 \pm 0.47 \pm 0.22$ 181 ± 16

- BES III measurement planned during the coming winter, a dedicated run at the Ds+ Ds- mass
- Compared to CLEO, gather ~5 times larger statistics → reduce the statistical uncertainty by a factor of 2. First results available by the end of 2016
- Hard to improve (BELL2?)

- Proton target
 - 10% p interactions → $\exp(-x/\lambda) = 0.9$ → $x/\lambda = -\ln(0.9) \sim 0.1$ → $x = 0.1 \lambda = 1.5$ cm Mo target interleaved with nuclear emulsions
- Charm yield $\sim 1.7 \times 10^{-3}$
- Fraction of charmed hadrons decaying inside the target, $\langle E_{Ds} \rangle = 45 \text{ GeV} \rightarrow \text{Fl} = 3.3 \text{ mm}$, assume 7.5 mm on average in the target $\rightarrow \sim \exp(-2.3) \sim 0.10 \rightarrow \sim 90\%$ decay inside
- Charm tagging in the emulsion (topological, secondary vertex detected within the expected flight length) ~ 50%
- Charm momentum measurement by a spectrometer, followed by a muon filter
- Overall factor $\sim 7.7 \times 10^{-5}$
- 10^9 protons \rightarrow 77000 detected charm pairs

Schematics of the detector

Protons and (emulsion) analysis time

- 10⁹ protons from SPS
- Assume $10^4/\text{cm}^2$ in emulsions $\rightarrow 10^5 \text{ cm}^2 \text{ x } 15$ films = $1.5 \text{ x } 10^6 \text{ cm}^2$
- Current speed per system ~ 100 cm²/h → 1.5 x
 10⁴ hours → analysis time ~ 2 months for 10 systems