

Plans and resources for TDR phase

Richard Jacobsson for SHiP and CERN Facility WG

6th SHiP Collaboration Meeting, CERN, 7-9 October, 2015

"Bow facing wave and row, row, row...."

6th SHiP Collaboration Meeting, CERN, 7-9 October, 2015

"MTP storm"?

Bow facing wave and row, row, row....

Preparation for next phase

• Drawing up the TDR phase

- Definition of milestones and priorities, facility and detector
- Project organization
- Safety organization and preparation of Safety Document structure for Safety File
- Documentation structure EDMS
- Resource profiles
- MoU exercise draw up work packages and tasks

Schedule with WP1 in LS3: baseline

With updated accelerator schedule (Run 2 up to end 2018 and two years LS2)

- Allows decoupling TDR phase from construction and production phase
- Allows avoiding the peak activity of the HL-LHC underground civil engineering
- Start facility commissioning and data taking in 2026
 - → Stop NA with LHC stop in 2024Q1 instead of 2025Q1 to have 2 years for WP1 civil engineering
 - → Latest start of SHiP CE works (counting back for WP3 WP4 WP2): 2021Q1
 - → Start of preconstruction studies (integration, EIA, permit, tendering): 2018Q3
 - → Relaxed initial phase and overall schedule, detector installation in ready to use experimental hall 2024 2025
 - ➔ TDRs for 2018
 - → Manpower allocation and limited resources in 2016 2018 for TDR as before

Schedule with WP1 in LS3: Cost profile

• Cost profile shifted by ~2 years and flatter (cost of facility remains unchanged)

Year	CE		CE engineer	Beamline	Target	Muon shield	"Services"	Cost/Year (MCHF)
20	16	0	0	0.3	0.15	C	0.3	0.75
20	17	0	0	0.6	0.4	C	0.3	1.3
20	18	0	0.201	0.4	1.05	C	0.3	1.951
20	19	0.25	0.804	0.3	1.3	C	0.3	2.954
20	20	3	0.804	4.8	1.5	2.4	1	13.504
20	21	7.5	0.804	6	1.5	4.5	2	22.304
20	22	10	0.804	5	1.5	4.5	4	25.804
20	23	13	0.804	3	8.1	C	5	29.904
20	24	10	0.804	0.3	8	C	5	24.104
20	25	7.8	0.804	0.3	0.5	C	4.3	13.704
Total (N	CF	51.55	5.829	21	24	11.4	22.5	136.279

6th SHiP Collaboration Meeting, CERN, 7-9 October, 2015

Facility: Resources in new schedule

- Resources required for the facility TDRs (2016 2018)
 - Extraction, beam line and splitter/switch: 1.3 MCHF + 3 FTEs
 - Target and target complex: 1.6 MCHF + 2.5 FTEs (was 8 FTEs)
 - Muon shield: 0.5 FTEs
 - Radiation protection: 0.4 MCHF + 1.5 FTEs
 - Safety engineering and environment: 0.5 MCHF + 1.5 FTEs
 - → Total of 3.9 MCHF and 9 FTEs required between 2016 and end of 2018
 - → Close contact with CERN experts for development of muon shield, vessel, experiment magnets on aspects of transport, in situ assembly, integration, and safety

• Milestones are clear

- → Many of the milestones related to the facility are of general interest beyond SHiP
- → External manpower welcome
- Integration (2018):
 - CV, EL, ABT, MEF, STI, RP, SEE, CE groups: 4 FTEs
 - CE: 0.2 MCHF + 1 FTE (associated with preconstruction phase)
- Preconstruction phase (2019 2020):
 - 2.5 MCHF + 4.5 FTEs of engineers + 3 FTEs of draughts men.

Facility TDR plan in preparation

	2015		20	016			20	17			20	18	
FTE for TDR	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
0.50 Extraction beam loss reduction and mitigation	SPS MD	Install Crystal			SPS MD			SPS MD			SPS MD	Report	
0.50 Design study for laminated splitter magnet		Market survey		Techncial specs		Design			Prototype		Complete tests	Report	
0.20 Expected 1 s slow extracted spill quality			Start PhD student		SPS MD			SPS MD			SPS MD	Report	
0.50 New optics and powering of TT20				Complete studies	Report								
0.20 Interlocking of key systems				Complete studies	Report								
0.40 Dilution sweep system for the target			Update specs				Magnet concept		Converter concept	Report			
0.50 New beamline from splitter to target				Update design			Update specs				Complete optics	Report	
0.20 New and upgraded beam instrumentation			Update specs	Ũ			Techncial concepts	Report					

Target:

- Target design and simulation, He cooled solution
- Helium vessel and circulation
- Shielding blocks design and cooling system
- Target material studies and tests
- (Prototyping including irradiation and material tests is expected to take four years \rightarrow later)

Radiation protection and safety:

- All aspects related to the shielding, dose monitoring, and work procedures
- Demolition of TDC2 and in-situ recycling of radioactive material
- Mitigation and intervention techniques related to activation in SPS extraction region and splitter region
- Optimization of target shielding
- Verification of doses in experiment facility along with optimization of muon shield and area layout
- Supervision of safety aspects of experiment design

6th SHiP Collaboration Meeting, CERN, 7-9 October, 2015

Experiment TDRs : Milestone priorities

Two "types" of milestones:

- "Technological": Delay in funding shifts these activities

		20	16			20	17		2018				
Milestones	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	
Optimizations, simulation studies, small scale prototyping													
Design and prototyping													
Testing and technological choices													
Write-up													

Global experiment optimization:

Vacuum chambers...!

NASA Plum Brook Station vacuum chamber

- D:30m x H:37.2m = 22 600 m³ (~10 x SHiP vessel....) → ~ SHiP experiment hall!
- Aluminum wall 25/35mm (2000 tons)
- Pressure < 2 x 10⁻⁹ bar..
- 8h pumping at 500 000 l/s !...

Surrounding concrete structure provide resistance to atmospheric pressure Leak-tight steel containment barrier embedded within concrete support ~25 mbar

Key milestones breakdown

- Key milestones to approach funding agencies for modest resources
 - Milestones prioritized and organized to limit resource request for 2016

without impacting progress

		2016	2017	2018
	Key milestones	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q
0	Active muon shield Optimization of the field map for background suppression Design of coil and yoke + optimization soft/GO steel, manufacturing method Prototype construction and test Study of (partially) superconducting option		•	
1	Neutrino Target Optimisation of brick structure to separate electron anti-neutrinos/neutrinos		_	
	Optimization of ECC and CES mechanical assembly and target material Demonstrate charge and momentum measurement in CES			
2	Target Tracker (nTT)			
	Demonstrate capability of connecting nTT and emulsion tracks at occupancy Choice of technology for final design: GEM vs SciFi vs Micromegas			
3	Muon Magnetic Spectrometer (nMMS)			
	Test streamer mode operation for RPC at the design rates Test OPERA RPCs for their possible re-use			
4	Vacuum Vessel Study of the required vacuum pressure and optimal geometry Optimization of the entrance/exit window of the vacuum vessel Design study including integration of liquid scintillator cells, incl market survey Study of alternative vessel designs - concrete bunker Choice of vessel design		•	
5	Surround Background Tagger (SBT) Optimization of liquid scintillator cell dimensions and PMT locations Development of complete cell prototype with reflection paint and <i>N</i> flushing Prototype performance tests		-	
6	Upstream VETO Tagger (UVT) Performance tests of 4m scintillating bars Optimization of the layout and support to minimize passive material Prototype construction and test			
7	Straw VETO Tagger (SVT) Background study to determine applicability and background rejection Design study			

6th SHiP Collaboration Meeting, CERN, 7-9 October, 2015

Key milestones per subsystem

		2016	2017	2018
	Key milestones	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q
8	Spectrometer Straw Tracker (SST)			
	Small-scale prototype construction and test		_	
	Demonstrate methods to control effect of straw sagging and alignment		- 1	
	Optimization of straw geometry, readout (1-, of 2-sided), overall geometry			
9	Spectrometer magnet			
	Definition of mechanical interface beteen HS magnet and vacuum vessel			
	Magnet design including mechanical analysis			
	Study of a superconducting alternative			
10	Spectrometer Timing Detector (STD)			
1	Optimization of geometry, readout and mechanical support			
	Prototype construction and performance test			
	Choice of technology for final design: Scintillating bars vs MRPC			
	Demonstrate method of fine time alignment			
11	Electromagnetic calorimeter (ECAL)			
	Optimization of cell size and module structure			
	Demonstrate method of monitoring and calibration			
	Prototype construction and test			
12	Hadronic calorimeter (HCAL)			
	Optimization of cell size and module technology			
	Engineering prototype of HCAL			
	Development of monitoring system			
13	Muon detector (MUON)			
	Optimization of the general layout and dimensions of scintillating bars			
	Demonstrate the time resolution of 1ns			
	Full-size prototype construction and test			
14	Online system			
14	Definition of the common readout protocol			
	TDAO demonstrator performance evaluated			
	Readout control specification for the FE and the BE			

Beam time in test beams will be important in 2016, expected to continue in 2017 and 2018.

6th SHiP Collaboration Meeting, CERN, 7-9 October, 2015

R. Jacobsson

Test beams 2016

	Jan	Start ic Controls and maintenance			on source C linac3 Start linac2 Feb					PS, SPS p PSB	tons to PSB	Beam available to LHC						
Wk	1	2		3	4	5	6		7		8		9	10		11	12	13
Мо		4 🖌 11		18	25	∀ 1	8	1	15	¥	22	♦	29		7	¥ 14	21	Easter Mon 28
Tu													1					
We																		
Th					I													
Fr					lecr	nnical st	ор				Re	eco in	ommission jectors				G. Friday	
Sa													-					
Su																		
ISOLDI	Beam to AD Start NA setup OLDE, nTOF, EA setup Apr					t Area May	Area May						June					
Wk	14	15		16	17	18	19		20		21		22	23		24	25	26
Мо		4 11	1	✓ ↓ 18	↓ 25	May Day	9		Whit 16		23		30		6	13	20	27
Tu											UA9 [24 h]							
We		Technical stop			Injector MD 10 hrs 8 to 18	Injector MD 10 hrs 8 to 18	Injector MD 10 hrs 8 to 18	1	Injector MD 10 hrs 8 to 18	1	Injector MD I0 hrs 8 to 18	1	Injector MD 10 hrs 8 to 18	Injector MD 10 hrs 8 to 18		Technical stop ITS2 24 hrs	Injector MD 10 hrs 8 to 18	Injector MD 10 hrs 8 to 18
Th						Ascension												
Fr																		
Sa																		
										_		_						

• Test beams in 2016

- NA and EA proton physics run from ~mid April to mid November
 → Use SPSC questions to motivate the requests
- Expertise, support and hardware needs from entire collaboration

Neutrino target magnet

• Existing magnet: Goliath

- Power: ~2 MW
- Maximum field: 1.4 T
- Gap volume: ~5 m³ (>50% field)
- Availability uncertain

ER

• R&D: Redesign in a slimmer version and lower power

- Maximum total width: ~2.5 m
- Aperture ~0.75 x 0.9 x 3 m³ at 1 T (to be revised)
- Estimated at 700 kCHF + 800 kCHF (power, cooling, interlocks)

6th SHiP Collaboration Meeting, CERN, 7-9 October, 2015

SHiP: Table of interests

Component	Institutes
Beamline and target	CERN
Infrastructure	CERN
Muon shield	RAL, Imperial College, Warwick, Bristol
HS vacuum vessel	NRC KI, NIKIET
HS spectrometer magnet	
Straw tracker	CERN, JINR, MEPHI, PNPI
ECAL	ITEP, Orsay, IHEP, INFN-Bologna
HCAL	ITEP, IHEP, INFN-Bologna, Stockholm
Muon	INFN-Bologna, INFN-Cagliari, INFN-Lab. Naz. Frascati,
	INFN-Ferrara, INR RAS, MEPhi
Surrounding background tagger	Berlin, LPNHE, MEPhI
Timing detector and upstream veto	Zürich, Geneva, INFN-Cagliari, Orsay, LPNHE
ν_{τ} emulsion target,	INFN-Naples, INFN-Bari, INFN-Lab. Naz. Gran Sasso,
	Nagoya, Nihon, Aichi, Kobe, Gyeongsang, Moscow SU,
	Lebedev, Toho, Middle East Technical University, Ankara
ν_{τ} target tracker	NRC KI, INFN-Lab. Naz. Frascati
ν_{τ} target magnet	
ν_{τ} muon spectrometer magnet	INFN-Bari, INFN-Naples, INFN-Roma
ν_{τ} tracking system (RPC)	INFN-Bari, INFN-Lab. Naz. Gran Sasso,
	INFN-Naples, INFN-Roma
ν_{τ} tracking system (drift tubes)	Hamburg
Online computing	CERN, Niels Bohr, Uppsala, UCL, YSDA, LPHNE
Offline computing	CERN, YSDA
MC simulation	CERN, Sofia, INFN-Cagliari, INFN-Lab. Naz. Frascati,
	INFN-Napoli, Zürich, Geneva and EPFL Lausanne,
	Valparaiso, Berlin, PNPI, NRC KI, SINP MSU, MEPhI,
	Middle East Technical University, Ankara, Bristol, YSDA,
	Imperial College, Florida, Kyiv

• We need strong and very available engineering team(s) for decay volume and muon shield

(News: PS to SPS beam transfer)

D. Manglunki:

• Continuous Transfer

- 10% to 15% of the beam sent to the SPS for fixed target is lost on SEH31. Taking into account the subsequent machine efficiencies (injection, capture, acceleration and slow extraction), it is a conservative estimation to state that for 1e20 protons on target, more than 2e19 14GeV/c protons are lost on SEH31!
- SEH31 is one of the most irradiated locations of the PS
- Changing cable or oil gives a collective dose of 1mSv

Study and test novel technique based on Multi-Turn Extraction

Principle of the new MTE

- Use non linear fields to create stable islands in the horizontal phase space ("transverse splitting")
- Use fast kicker to jump magnetic septum and extract the 5 beamlets

\rightarrow Put in operation on 21/9/2015, workshop in two weeks

6th SHiP Collaboration Meeting, CERN, 7-9 October, 2015