BUILDING A DETECTOR
IN FAIRSHIP

oV ANNARITA BuonauRrA

0
NV Universita pi Napors & INFN | %
SHiP

6th SHiP Collaboration Meeting

CERN
October 7 - October 9, 2015

1

OUTLINE

= Introduction

= Creating a new detector class
» The CMakelLists file
» The Hits class
» The Detector Class
~ ConstructGeometry()
~ ProcessHits()
- AddHit()

= How to make everything work
» The LinkDet.h file
» Make FairShip know about your detector

INTRODUCTION

» SHiP geometry environment is mainly based on the ROOT/TGEOQO package.
» It is a tool for building, browsing, navigating and visualizing detector

geometries
» Particle transport is obtained by working in correlation with simulation

packages such as GEANT3, GEANT4 and FLUKA

» 'To create a new detector you have to implement some classes which will describe
your detector.
» To describe a detector (possibly in a new folder of FairShip/) it is important to
implement:
» the CMakeFile
» the detector class
» the detector MC Point class

CREATING A NEW
DETECTOR CLASS

THE CMakeLists FILE

» For a standalone detector create a new folder.

» When creating a new folder (e.g: FairShip/Box) it is necessary to first define a
CMakeLists file containing the names of the .cxx file in the folder.
» It will create a library which includes the source files written in the folder .

& &

ar4r4la

Box.cxx

Box.h
BoxContFact.cxx
BoxContFact.h
BoxLinkDef.h
BoxPoint.cxx
BoxPoint.h

4 CMakeLists.txt)

set (INCLUDE_DIRECTORIES
${BASE_INCLUDE_DIRECTORIES}

${CMAKE_SOURCE_DIR}/Box
${ROOT_INCLUDE_DIR}

)

include_directories(${INCLUDE_DIRECTORIES})
include_directories(SYSTEM ${SYSTEM_INCLUDE_DIRECTORIES})

set (LINK_DIRECTORIES
${ROOT_LIBRARY_DIR}

)
link_directories(${LINK_DIRECTORIES})

Box.cxx
BoxPoint.cxx

BoxContFact. cxx
)

Set (HEADERS)
Set (LINKDEF BoxLinkDef.h)

GENERATE_LIBRARY()

THE HI'TS CLASS

cl
{

};

ass BoxPoint : public FairMCPoint
public:
/** Default constructor **/
BoxPoint();
/** Constructor with arguments
*@param trackID Index of M(Track
*@param detID Detector ID
*¶m pos Ccoordinates at entrance to active volume [cm]
*@param mom Momentum of track at entrance [GeV]
*@param tof Time since event start [ns]
*@param length Track length since creation [cm]
*@param eloss Energy deposit [GeV]
.‘/
BoxPoint(Int_t trackID, Int_t detID, TVector3 pos, TVector3 mom,
Double_t tof, Double_t length, Double_t eloss, Int_t pdgCode);
/** Destructor **/
virtual ~BoxPoint();
/** Qutput to screen **/
virtual void Print(const Option_t* opt) const;
Int_t PdgCode() const {return fPdgCode;}
private:

Int_t fPdgCode;
/** Copy constructor **/

BoxPoint(const BoxPoint& point);
BoxPoint operator=(const BoxPoint& point);

ClassDef(BoxPoint,1)

@!

B&Po in t.

Functions defined in Box.cxx

THE DETECTOR CLASS

virtual void EndOfEvent();
virtual void FinishPrimary() {;}
virtual void FinishRun() {;}
virtual void BeginPrimary() {;}

/** container for data points */
TClonesArray* fBoxPointCollection;

rotected:
virtual void PostTrack() {;})
virtual void PreTrack(Q) {;} Double_t BoxX;
virtual void BegintEvent() {;} Double_t BoxY;

Double_t BoxZ;

Int_t InitMedium(const char* name);

Functions defined in Box.cxx

class Box : public FairDetector
{
|public:
Box(const char* name, const Double_t BX, const Double_t BY, const Double_t BZ, Bool_t Active, const char* Title = "Box");
Box();
virtual ~Box();
 an Create the detector geometry ./
void ConstructGeometry();
/** Initialization of the detector is done here */
virtual void Initialize();
/** Method called for each step during simulation (see FairMCApplication::Stepping()) */
virtual Bool_t ProcessHits(FairVolume* v=0);
/** Registers the produced collections in FAIRRootManager. */
virtual void Register();
/** Gets the produced collections */ Box(const Box&);)
virtual TClonesArray* GetCollection(Int_t iColl) const ; Box& operator=(const Box&);
[
/** has to be called after each event to reset the containers */ ClassDef(Box,1)
virtual void Reset(); brivate:
/** How to add your own point of type BoxPoint to the clones array */ /** Track information to be stored until the track leaves the active volume.
Int_t fTrackID; //' track index
BoxPoint* AddHit(Int_t trackID, Int_t detID, TVector3 pos, TVector3 mom, Int_t fVolumelID; //! volume id
Double_t time, Double_t length, Double_t eloss, Int_t pdgCode); TLorentzVector fPos; //1 position at entrance
TLorentzVector fMom; //! momentum at entrance
Double32_t fTime; /7! time
virtual void CopyClones(TClonesArray* cll, TClonesArray* cl2 , Int_t offset) {;} Double32_t flength; /71 length
virtual void SetSpecialPhysicsCuts() {;} Double32_t fELoss; //1 energy loss

*/

CONSTRUCTGEOMETRY()

void Box::ConstructGeometry()
{
InitMedium("Scintillator™);
TGeoMedium *scint =gGeoManager->GetMedium("Scintillator");

TGeoVolume *topDV= gGeoManager->GetVolume("DecayVolume");
TGeoBBox *BOX1 = new TGeoBBox(BoxX/2,BoxY/2,BoxZ/2);
TGeoVolume *VBOX1 = new TGeoVolume("volBox", BOX1l,scint);
VBOX1->SetLineColor(kRed);

topDV->AddNode(VBOX1,1,new TGeoTranslation(0,0,50));
AddSensitiveVolume(VBOX1);

CREATING THE SHAPE

» The basic bricks for building-up the model are called volumes.

» Volumes are put one inside another making an in-depth hierarchy. The biggest
one containing all others defines the “world” of the model.

» Since in FairShip the world has already been defined, when writing a new detector
class it can be called through:

TGeoVolume *top = gGeoManager->GetTop Volume();

NB: The default units are in centimeters

» Each volume has a shape. The shape provides the definition of the 1o c al
coordinate system of the volume.

» Any volume must have a shape.

» Any shape has to derive from the base TGeoShape class.

» At the moment a set of 20 basic shapes is provided (primitive) for example:
BOX , TRAP, TUBE, CONE, SPHE, ... but there is also the possibility to create
shapes as a result of Boolean operations between primitives. These are called
composite shapes

CREATING THE SHAPE (I1)

» All primitives have constructors like:

TGeoXXX(const char *name, <type> parami, <type> paramz2, ...);
TGeoXXX(<type> parami, <type> param2, ...);

Example
In YourDetector.cxx file, when constructing the geometry:

TGeoBBox *Box = new TGeoBBox(Double_t dx,Double_t dy,Double_t dz);

NB: dx, dy and dz represent the half-lengths on X, Y and Z axis

p beam ‘ jX
*

Vacuum vessel

10

DEFINING THE MEDIA

» Together with shapes, volumes need media to be created, because materials
represent the physical properties of the solid from which a volume is made.

» The TGeoMedium class defines the media, that are material with tracking parameters
needed for the transport (sensitivity flag, field flag, max field value)

» In FairShip media are read by the geometry/media.geo file throughout the private
function InitMedium:

Int_t XXX::InitMedium(const char* name)
{
static FairGeoLoader *geol.oad=FairGeoLoader::Instance(;
static FairGeolnterface *geoFace=geoload->getGeolnterface(;
static FairGeoMedia *media=geoFace->getMedia();
static FairGeoBuilder *geoBuild=geoLoad->getGeoBuilder(;
FairGeoMedium *ShipMedium=media->getMedium(name);
if (ShipMedium)
{ Fatal("InitMedium","Material %s not defined in media file.", name);
return -I1I1;}
TGeoMedium* medium=gGeoManager->GetMedium(name);
if (medium!=NULL)
return ShipMedium->getMediumIndex();
return geoBuild->createMedium(ShipMedium);
} 11

DEFINING THE MEDIA

» Together with shapes, volumes need media to be created, because materials
represent the physical properties of the solid from which a volume is made.

» The TGeoMedium class defines the media, that are material with tracking parameters
needed for the transport (sensitivity flag, field flag, max field value)

» In FairShip media are read by the geometry/media.geo file throughout the private
function InitMedium:

Int_t XXX::InitMedium(const char* name)
{
static FairGeoLoader *geoLoad=FairGeoLoader::Instance0:;
static FairGeolnterface *{
static FairGeoMedia *mec
static FairGeoBuilder *ge
FairGeoMedium *ShipMec
if ((ShipMedium) InitMedium("iron");
{ Fatal("InitMedium","Materi} TGeoMedium *Fe =gGeoManager->GetMedium(“iron");
return -II1I;}
TGeoMedium* medium=g(
if (medium!=NULL)
return ShipMedium->getMediumIndex();
return geoBuild->createMedium(ShipMedium);
} 12

Example
In YourDetector.cxx file, when constructing the geometry:

DEFINING THE MEDIA (I1)

» New media can be added to the geometry/media.geo file.

» There can be multiple kind of definitions according to the knowledge of the
different properties of the considered medium

Name Number of GO\MPOMMS A/Z/Density Relative weights
carbon 1 12.011 6.0 2.265
0 1 30. .001
0
air 3 14.01 16. 39.95 7. 8. 18. 1.205e-3 .78 .21 .01

/e NN
AP

Sensitivity flag
Maximum field

Number of Cerenkov parameters

13

DEFINING THE MEDIA (I11)

Name Number of components A Densny Number of atoms
\ \ I\ L\
\ 7\ I\\ \ L\
TRDgas -3 12.011 15.994 131.29 6. 8. 54.0.004944 1.5 3. 8.5
1 0 20. lOo-4

Sensitivity flag Field flag \ EPSIL

Maximum field

Number of Cerenkov parameters

proportion by

Name Number of components A < Density number of atoms
Csl -2 132.9054 126.9045 55. 53. 453 1 1

1 1 20. .00001

2
Number of /1.77 50000. 1.0 1.0003

Cerenkov
parameters 10.5 50000. 1.0 1.0003
/ / \ e
/ \ s
S~
photon momentum in eV /

\ refraction index for a dielectric, rindex[0)=0 for a metal

absorption length in case of
dielectric and absorption

o "
probabilities in case of o metal detection efficlency

14

CREATING THE VOLUME

» Volumes need media and shapes in order to be created.

» Both containers and contained volumes must be created before linking them
together, and the relative transformation matrix must be provided.

» Any volume has to be positioned somewhere otherwise it will not be considered
as part of the geometry.

/I Making a volume out of a shape and a medium.

TGeoVolume *vol = new TGeoVolume(*“VNAME” ptrShape,ptrMed);

Example
In YourDetector.cxx file, when constructing the geometry:

TGeoVolume *VBox = new T'Geo Volume('volBox", Box, scint);

15

POSITIONING THE VOLUME

» In volume creation no need to specify whether it contains or not other volumes.

» Adding daughters to a volume implies creating those and adding them one by one
to the list of daughters.

» Positions of daughter volumes with respect to the center of mother volume must be
known, hence it is necessary to supply a geometrical transformation when
positioning daughter volumes.

» Daughter volumes must not extrude the mother shape.

» Volumes positioned in the same container must not overlap with each other

TGeo Volume::AddNode(TGeo Volume *daughter,Int_t usernumber, TGeoMatrix *matrix)

Example
In YourDetector.cxx file, when constructing the geometry:

Int_t nReplica = 1;
TGeoTranslation *t = new TGeoTranslation(tx,ty,tz);
top -> AddNode(VBox, nReplica, v); t{

L

Mother Volume Number of Replica Translations along x,y,z wrt
16 center of mother volume

POSITIONIN ((} ’)FHE VOLUME
1§

» If the detector consists of a repetition of unitary cells (e.g. 10 iron layers), it is
important not to create a different shape and a different volume for each cell.
» It is enough to replicate the ones that have been already created

Example
In YourDetector.cxx file, when constructing the geometry:

Int_t nReplica = 10;

TGeoBBox *sbox = new TGeoBBox(dxi, dyr, dzp);

TGeoVolume *Vsbox = new TGeo Volume('"vollron", sbox, iron);

for(Int_t n =0; n< nReplica; n++)

{
Double_t t’z = n*o.1;

TGeoTranslation *t = new TGeoTranslation(o,0,t'z);
Box -> AddNode(VBox, n, t);

17

ACTIVE VS PASSIVE VOLUMES

» Passive volumes should inherit from the FairModule class.

Example
In YourPassiveDetector.cxx file, when defining the class constructor:

PBox::PBox(::FairModule(“PassiveBox”, “Title”)

18

ACTIVE VS PASSIVE VOLUMES

» Passive volumes should inherit from the FairModule class.

» Active volumes must inherit from the FairDetector class.
» The Detector class is a sub class of the module which implements extra functions
called from the event loop of the MC to make some actions during simulation

Example
In Your ActiveDetector.cxx file, when defining the class constructor:

e
ABox::ABox()::FairDetector(‘ActiveBox”, “Title” KTRUE)

P Bool_t IsActive

» Sensitive volumes defined using AddSensitiveVolume(volName)

Example
In Your ActiveDetector.cxx file, when constructing the geometry:

AddSensitive Volume(VBox);

19

MAGNETIC FIELD

» The value of the magnetic field can be defined as a private member of the detector

class.
» Then in YourDetector.cxx file, when constructing geometry:

Example

TGeoUniformMagField *magField = new
TGeoUniformMagField(o.,-MagneticField,o.);

volBox->SetField(magField);

Note: This is valid only in FairShip.
Necessary to manipulate G4 geometry to enable magnetic field in active shielding. Private fix in

run_simScript.py to make it work

manipulate G4 geometry to enable magnetic field in active shielding, VMC can't do it.

tmport geomGeant4

geomGeanty.set MagnetField() # (dump') for printout of mag fields
20

PARAMETER FILES

» In order to study different detector designs, basic geometry parameters should be
given by instantiation of the geometry objects, not hardcoded in C++ class.
» Basic parameters are in geometry/geometry_config.py

Example

c.Box = AttrDict(z=0*u.cm)
c.Box.BX = 3*u.m;
c.Box.BY = 3*u.m;
c.Box.BZ = 3*u.m;

» Geometry objects are created by python/shipDet_conf.py and declared to the
run manager FairRunSim(

Example

Box = ROOT.Box("Box",ship_geo.Box.BX, ship_geo.Box.BY,
ship_geo.Box.BZ, ROOTKTRUE)
run.AddModule(Box)

21

PARAMETER FILES

» In order to study different detector designs, basic geometry parameters should be
given by instantiation of the geometry objects, not hardcoded in C++ class.
» Basic parameters are in geometry/geometry_config.py

Example

c.Box = AttrDict(z=0*u.cm)
c.Box.BX = 3*u.m;
c.Box.BY = 3*u.m;
c.Box.BZ = 3*u.m;

» Geometry objects are created by python/shipDet_conf.py and declared to the
run manager FairRunSim(

Example

Box = ROOT.Box("Box",ship_geo.Box.BX, ship_geo.Box.BY,
ship_geo.Box.BZ, ROOTKTRUE)
run.AddModule(Box)

22

PROCESSHITS(

Bool_t Box::ProcessHits(FairVolume* vol)
{
/** This method is called from the MC stepping */
//Set parameters at entrance of volume. Reset ELoss.

if (gMC->IsTrackEntering()) {
fELoss = 0.;
fTime = gMC->TrackTime() * 1.0e09;
fLength = gMC->TrackLength();
gMC->TrackPosition(fPos);
oMC->TrackMomentum(fMom) ;
}
// Sum energy loss for all steps in the active volume
fELoss += gMC->Edep();

// Create BoxPoint at exit of active volume
if (gMC->IsTrackExiting() I
gMC->IsTrackStop() N
gMC->IsTrackDisappeared()) {
fTrackID = gMC->GetStack()->GetCurrentTrackNumber();
fVolumeID = vol->getMCid();
Int_t detID=0;
gMC->CurrentVolID(detID);

if (fVolumelID == detID) {
return KTRUE; }
fVolumeID = detID;

gGeoManager->PrintOverlaps();

if (fELoss == @.) { return kFALSE; }
TParticle* p=gMC->GetStack()->GetCurrentTrack();
Int_t pdgCode = p->GetPdgCode();

TLorentzVector Pos;
gMC->TrackPosition(Pos);

Double_t xmean = (fPos.X()+Pos.X())/2. ;
Double_t ymean = (fPos.Y()+Pos.Y())/2. ;
Double_t zmean = (fPos.Z()+Pos.Z())/2. ;

AddHit(fTrackID,fVolumeID, TVector3(xmean, ymean,

zmean),

TVector3(fMom.Px(), fMom.Py(D), fMom.Pz()), fTime, flength,

fELoss, pdgCode);

// Increment number of muon det points in TParticle
ShipStack* stack = (ShipStack*) gMC->GetStack();
stack->AddPoint(ktauBox);

}
return kTRUE;

23

SAVING THE HITS: ADDHIT(

BoxPoint* Box::AddHit(Int_t trackID,Int_t detID,
TVector3 pos, TVector3 mom,
Double_t time, Double_t length,]|
Double_t eloss, Int_t pdgCode)

{
TClonesArray& clref = *fBoxPointCollection;
Int_t size = clref.GetEntriesFast();
return new(clref[size]) BoxPoint(trackID,detID, pos, mom,
time, length, eloss, pdgCode);
}

24

L~

HOW TO MAKE
EVERYTHING WORK

THE BOXLINKDEF.H FILE

» In the folder of your detector.

» The ROOTCINT program generates the Streamer(, TBuffer &operator>>(0 and
ShowMembers() methods for ROOT classes as well as the CINT dictionaries needed
in order to get access to ones classes via the interpreter

» The LinkDef file tells ROOTCINT for which classes the method interface stubs
should be generated.

fifdef __CINT__

fpragma link off all globals;
fpragma link off all classes;

fpragma link off all functions; The "+" at the end (ACLiC) invokes

tpragma link C++ class Box+; | ___— the dictionary generator and all the
fpragma link C++ class BoxPoint+f”” rest (essential)
tpragma link C++ class BoxContFact+;

tendif

26

MAKE FAIRSHIP KNOW
ABOUT YOUR DETECTOR

» FairShip/CMakeLists.txt
» To make the FairShip software read the new folder, it is important to insert the

title of the folder among those contained in the general CMakeLists.txt file

» shipdata/ShipDetectorList.h
» In the constructor of the Box class a unique identifier is given to the detector

that has to be added to the list of the other identifiers :

Box: :Box(const char* name, t Double_t BX, const Double_t BY, const Double_t BZ, Bool_t Active,const char* Title)
: FairDetector(name, true@ ————

| Box.cxx |

e - 1‘,"’7 = ” - g — :1 _
- . | ShipDetectorList.b]

|

e e

#define ShipDetectorlList_H 1 (
| J

// KSTOPHERE is needed for iteration over the enum. All detectors have to be put before. |
enum DetectorId {kVETO, ktauRpc, ktauTar‘get&(Str‘aw, kecal, khcal, kMuon ,kTRSTATION}; ;‘;

#endif

SUMMARIZING

=To create a new detector folder:
= Add your folder in the FairShip directory
= Modify the FairShip/CMakeLists.txt adding the name of your folder after ENDIF
(NO FAIR ROOT FOUND) with command add_subdirectory (folder name)
= In Shipdata/ShipDetectorList.h add the unique identifier you give to your detector
(the same you will need to use in one of the constructor of your detector class,
look £Box in Box.cxx.
= In the new folder:
= Create a CMakeLists.txt file and a xxxLinkDefh file (take a look at those in the box
folder)
= [f detector is active create the YourDetectorPoint.h (cxx) files (otherwise skip)
= Create the detector class (YourDetectorh(cxx)) and if the detector is passive do not
use functions read hits (see for example FairShip/passive/Ship Magnet.h)
= Check if the media of which your detector is made is already been created in
geometry/media.geo (otherwise create using info on the slides)
= Add the parameters of your detector in the geometry/geometry_configpy file
= Create the geometry object corresponding to your detector by defining it in python/
shipDet_conf.py

28

SUMMARIZING

=This is just a very short introduction on the possibilities given by FairROOT to
create new detector geometries.

=The best way to learn is to try, try and try, also by taking a look at what other people
have done.

= For further information on the geometry package please refer to the FairROOT
documentation

29

