

$\mathsf{TDAQ} \to \mathsf{TDR}$

For R.Brenner, L.Gustafsson (Uppsala), M. Campanelli(UCL), HD(CERN), S.Xella (Niels Bohr)

- Reminder new layout of DAQ.
- Progress on demonstrator for the TDR.
- Your DAQ needs you!

New DAQ Layout Reminder

- TFC: only clock/start of cycle → FE
- FE sends frames \rightarrow PC-NIC
- PCs: built (JUMBO)MEPs, throttles and send to destination via switch.

For more details: see backup slides.

TDR Demonstrator

Hardware:

- TFC: use LHCb-PCle40 board?
- FEs: emulate with PCle40 board?
- 2 PCs with I/O NICs.
- Switch to connect PCs.

Really core of real system:

- TFC: could be final one.
- FE-emulation: could produce many Ethernet links, with different phases/link etc..
- MEP and Event building software: could be final one.
- Only need to scale number of PCs and Switch.

Steps towards Demonstrator

Put following milestones in Addendum to SPSC:

- Definition of the common readout protocol: Q3/2016
- TDAQ demonstrator performance evaluated: Q3/2017
- Readout control specification for FE and BE: Q3/2018

Present status:

- Uppsala takes responsibility for TFC. In contact with LHCb. Studying what is the most promising solution to implement TFC.
- FF-emulation:
- We will built our own emulator. Investigating what is "cheapest" way, commercial card, or LHCb line?
- We invite one or two FE developpers to contact us, so that we can "ping" with them instead of working in the vacuum. No hurry, sometime next year to start discussion?
- PC software+emulation: manpower needed!
 "New" institute might be interested, under discussion.

Conclusion

- Evaluating best choices for Demonstrator.
- Which sub-det(s) can we contact to discuss best FE↔DAQ interface?
- Still looking for manpower!

BACKUP SLIDES

New DAQ Discussion

- FE↔DAQ much simpler:
- FE just have to put their data on an optical Ethernet link.
- Point⇔point link to a PC-NIC. Many low occupancy links (150 RPC links!): aggregate switches (say $31\rightarrow 1$) in between FE and PC. But: always one destination/FE-link, given during configuration.
- FE does not throttle, just truncate in case its own buffer is full, and set truncation bit for this frame.
- Less buffer needed in FE, since it can send Frames (say every 100 ns).
- Only caveat:
 - * FE used to send MEPs (with >600 Bytes/MEP)/Ethernet package.
 - * Now could send "Frames" of ~ 10 Bytes, but Ethernet overhead/package ~ 40 Bytes.
 - * Up to FE to pack more frames into one Ethernet package to reduce overhead fraction.
- TFC does the same as before:
- It generates the clock, and transmits start of SPS-cycle over GBT \rightarrow FE.
- It receives availability from PC (via Ethernet from the switch).
- Iso sending destination/throttle to FE, it now sends it over Ethernet via the switch to all PCs.
- New role of the PCs:
- PC now has to built MEPs from the frames it receives.
- Drop those MEPs throttled by the TFC if there is no free PC buffer for them.
- It should add the destination to the MEPs, and send them of via the switch to a PCs.
- Use NICs iso PCIe40 cards: cheaper!
- PCs like before do event building, and run trigger software.

DAQ Data-Formats

FE Frame: A frame length of 100 ns would suffice for most sub-detectors. Using the start of the SPS-cycle to synchronize the different sub-detectors. Note: clock will be 40 MHz.

Frame-size (2B) J (4B) Source-ID(2B) Truncated(1b) Version(7b) Data of frame J = frame # in a SPS-cycle.

Source-ID: point-point FE-PCNIC connection, but aggregate multi-FE into one before the PCs. One Byte (avoid overhead \odot) for (truncation bit + version#)

Below what is happening on the PCs:

Multi Event Package (MEP): put all data of one cycle in "JUMBO" MEP on its PC.

MEP-size(4B)	Cycle#(4B)	Source-PC(2B)	Magic(2B)	Data
--------------	------------	---------------	-----------	------

Data contains:

Frame_{J=0} Frame_{$J=last of cycle(=72\times10^6 ?)}</sub>$

TFC collects availability from PCs, and distribute the MEPs/cycle destination to PCs, over the switch.

Event: all MEPs of a SPS-cycle are routed to the same PC in the EFF.
 One PC will run the trigger code on one full SPS-cycle of say 7.2 seconds.
 If the trigger selects a group of frames, it will produce an "Event", which will then be written to storage. The data format of an event:

Event-size Trigger header Trigger data Cycle# Frames $_{K-n}$ Frames $_{K+n}$

No duplication of events anymore due to JUMBO-MEPs (thanks Federico Alessio!)

Miscellaneous

Sub-det	Target	RPC	Drift	BckGr	Veto	Spectr	Calo	Muon
	Tracker		Tubes	Tagger	Taggers	Tracker		
#-channels	120k	8.2k	4k	1.7k	0.8k	41k	13k	8k
Time window (ns)	350	100	1500	50	50	250	100	30
Data size (Bytes)	28/hit	3/hit	3/hit	4/hit	5/hit	3/hit	160/cl.	3/hit
Hits/particle	10	22	40	2	2	40	1	16
Ethernet links	few	150	10	few	few	few	16	20

- Compare data rates: LHCb will have a few TB/s, while SHiP is estimated to transfer few GB/s.
- Prefer optical Ethernet (400 m) iso GBT: this means "no" radiation at FE.
- Radio-protection note: https://edms.cern.ch/edmsui/#!master/navigator/document?D:1185319677:1185319677:subDocs
- Mario Campanelli trying to follow this up:
- Where are the FEs of the sub-detectors located?
- What is the radiation level? Preliminary: <100 Gy (for 2×10^{20} POT)
- If there is a FE which needs/wants GBT to send data: no problem! Just need to buy PCle40 for those PCs which receive this FE-info.

