Direct Searches for New Physics Particles with BABAR

J. Chauveau

LPNHE- CNRS-IN2P3/Université Pierre et Marie Curie Paris-6
On behalf of the BABAR Collaboration

6th SHiP Collaboration Meeting

7-9 October 2015 CERN

Scope

- Hidden sector searches emerged as a strong topic in the late years of the BABAR experiment.
- Among the particles sought by SHiP, BABAR looked for

Dark photon A'

PRL113, 201801 (2014)

Dark Higgs h'

PRL108, 211801 (2012)

Long lived neutral particles LLP or L PRL114, 171801 (2015)

- Other paths to dark sectors were explored (preliminary results), some are still studied
 - Spinoff of A⁰ -> invisible(s)

arXiv:0808.0017 [hep-ex]

PRL107, 021804 (2011)

4 leptons events from W'

arXiv:0908.2821 [hep-ex]

Nucl.Instrum.Meth. A479 (2002) Nucl.Instrum.Meth.A729 615 (2013)

The BABAR Experiment

Datasets

- A' and L searches on full data sample
 514 fb⁻¹ (of 531.34 fb⁻¹)
- A⁰ search on the narrow resonances
 - > inclusive
 - **≻**tagged

471 M events

 $\pi\pi$ transitions

Dark photon A' (or U boson)

PRL113, 201801 (2014)

Viewpoint: New Light Shed on Dark Photons

Douglas Bryman, University of British Columbia, Vancouver, British Columbia V6T2A3, Canada November 10, 2014 • Physics 7, 115

A search for a photonlike particle that could be related to dark matter has come up empty, putting new constraints on models that imagine a dark form of electromagnetism.

L=514 fb⁻¹

Dark photon

- photon \rightarrow A'; $\alpha \rightarrow \epsilon^2 \alpha$. A' narrow
- look for narrow resonance produced in e⁺e⁻, decaying to 2 leptons A' \rightarrow e⁺e⁻, μ ⁺ μ ⁻

Signal in muon/hadron detector

$A' \rightarrow e^+e^-, \mu^+\mu^-$

PRL113, 201801 (2014)

Event selection

- 2 tracks + 1 photon with E_{cm}>200 MeV
- 1 (e) or 2 (e,μ) track(s) positively identified
- Kinematic+ geometric fit
- MVA to remove conversions (e)

Measurement (blind analysis)

- Final sample with radiative Bhabha's
 + μμγ + narrow resonances
 - Correction to model the remaining conversions
- Extract cross section with fits over sliding windows covering

0.02 (e), 0.212 (μ) < $m_{A'}$ < 10.2 GeV

$A' \rightarrow e^+e^-, \mu^+\mu^-$

PRL113, 201801 (2014)

Fit window size >> signal width, << total mass range. Hence, we can use a polynomial background shape to obtain an optimal signal to background ratio.

A few scan points:

$A' \rightarrow e^+e^-, \mu^+\mu^-$

PRL113, 201801 (2014)

- Highest fluctuations
- > 3.4 σ (e) M=7.02 GeV
- \triangleright 2.9 σ (μ) M=6.09 GeV p-values=0.57, 0.94 including trial factors.

Bayesian 90% C.L. upper limits ~ 1 to 10 fb

used to derive 90% u.l. on ε .

Dark photon Impact

- BABAR all inclusive search in $e^+e^-\rightarrow \gamma$ A' has improved the constraints by an order of magnitude in the relevant mass range 0.2 < m_{A'}<10 GeV/c².
- Parameter space for A' causing g-2 effect is now restricted to $15 < m_{A'} < 35 \text{ MeV}$

Dark photon Impact:

update at Phi Psi 2015/FPCP (A. Denig)

Search for long lived particles

PRL114, 171801 (2015)

```
L(4S) = 404 \text{ fb}^{-1} \text{ N(4S)} = 448 \times 10^6 \text{ events}

(below) 44 \text{ fb}^{-1}

[+ (4S) 20 \text{ fb}^{-1} \text{ validation}

L(3S) = 28 \text{ fb}^{-1} \text{ N(3S)} = 121 \times 10^6

L(2S) = 14 \text{ fb}^{-1} \text{ N(2S)} = 98 \times 10^6
```

Motivation

At the B factories LLP could come via

Vector portal

Dark photon couples to light dark sector (pseudo) scalar/vector which could be long lived

P. Schuster, N. Toro, I. Yavin, PRD 81, 016002 (2010)

R. Essig, P. Schuster, N. Toro, PRD 80, 015003 (2009)

Scalar portal

h_(D) mixing with H

Inflaton

J.D. Clarke, R. Foot, R. Volkas, PRD 80, 015003 (2009) F. Bezrukov, D. Gorbunov JHEP 1307 (2013) 140

Method

- Search in e+e- collisions for L
 - Long lived
 - Neutral
 - with 2-body charged decays $L \rightarrow f$, f=

$$e^+e^-, \mu^+\mu^-, e^\pm\mu^\mp, \pi^+\pi^-, K^+K^-, \pi^\pm K^\mp$$

- Presented in 2 ways
 - (MI) Model independent

• (MD) $B \rightarrow X_s L$

- Displaced vertex
- > Peaks in V invariant mass

Upper limits vs m of

- $ightharpoonup \sigma(e+e o L) imes BF(L o f) imes ε(f)$ at or near Y(4S), at Y(2S,3S) giving tables of ε(m, p_t, cτ)
- \triangleright BF(B \rightarrow X_s L) \times BF(L \rightarrow f)

Supplement to PRL114, 171801 (2015)

Selection

- Select x⁺x⁻ pair
 - Loose particle identification , allowing reuse
- $d_0 > 3 \sigma(d_0)$
- Vertex at r from beamspot
 - $-\chi^{2}<10$
 - 1 < r < 50 cm, $\sigma_r < 0.2$ cm
 - away from material
 - $\alpha < 0.01 \text{ rad}$
 - $-\sigma_m$ <0.2 GeV/c²
- No upstream hit on tracks
- Remove Λ , K_S candidates (mass)

- ε_{max} =52% for f= $\pi\pi$ with m=2GeV/c², c τ =6cm and p_t >4GeV/c
- main background: random pairs of high d_0 tracks from Λ , K_S and K/π decays in flight

Signal extraction

PRL114, 171801 (2015)

For each mode & each data sample, perform unbinned likelihood fits, scanning the mass range in 2 MeV/c² steps.

- Fit background on data assuming no peak.
- Signal PDF has the MC mass resolution shape, scaled to the measured rms.
- $\sigma_{\rm m}$ from 6 to 180 MeV/c² across the range.
- Significance: $S = \text{sgn}(n_s) \sqrt{\frac{2Ln\frac{L(s+b)}{L(b)}}{L(b)}}$ <3 except for 2 scan points in Y(4S) sample
 - One consistent with γ conversion,
 - The other is not significant, when accounting for the look elsewhere effect.

Radiative Y([1,3]S) decays to invisibles

L(2S) = 14 fb⁻¹ N(2S) = 98 × 10⁶ events,
N(2S
$$\rightarrow \pi^+\pi^-$$
1S) = 18 × 10⁶ events.

 $L(below) = 1.4 \text{ fb}^{-1}.$

Searches at BABAR

$Y(3S) \rightarrow \gamma A^0, A^0 \rightarrow invisible$	arXiv:0808.0017 [hep-ex]	
$Y(3S) \rightarrow \gamma A^{0}, A^{0} \rightarrow \tau^{+}\tau^{-}$	PRL 103, 181801 (2009)	
$Y(2S, 3S) \rightarrow \gamma A^{0}, A^{0} \rightarrow \mu^{+}\mu^{-}$	PRL 103, 081801 (2009)	
$Y(2S, 3S) \rightarrow \gamma A^0, A^0 \rightarrow hadrons$	PRL 107, 221801 (2011)	
$Y(1S) \rightarrow \gamma + invisible$	PRL 107, 021804 (2011)	
$Y(1S) \rightarrow \gamma A^0, A^0 \rightarrow \mu^+\mu^-$	PRD 87, 031102 (2013)	
$Y(1S) \rightarrow \gamma A^{0}, A^{0} \rightarrow \tau^{+}\tau^{-}$	PRD 88, 031102 (2013)	
$Y(1S) \rightarrow \gamma A^0, A^0 \rightarrow gg,ss$	PRD 88, 031701 (2013)	
$Y(1S) \rightarrow \gamma A^0, A^0 \rightarrow cc$	PRD 91, 071102 (2015)	

$A' \rightarrow invisibles$

90% C.L. upper limits on $\mathcal{B}(Y(3S) \rightarrow \gamma A^0) \times \mathcal{B} (A^0 \rightarrow invisible)$

90% C.L. upper limits on $\mathcal{B}(Y(1S) \rightarrow \gamma A^0) \times \mathcal{B} (A^0 \rightarrow invisible)$

90% C.L. upper limits for $\mathcal{B}(Y(1S) \rightarrow \gamma \chi \overline{\chi})$

$A' \rightarrow invisibles$

- Though unpublished, BABAR Y(3S) paper arXiv:0808.0017
 (2008) has 74 citations,
- e.g. a reinterpretation by theoreticians including continuum events under the 3S peak.
- This analysis is currently upgraded in BABAR.
- Interesting propects for Belle II.

R. Essig et al., JHEP 1311 (2013) 167

Dark Higgs h'

PRL108, 211801 (2012)

- Mass generation in the dark sector
- Higgs-strahlung allows a low background search in the kinematic region
 - $-M_{h'} > 2 M_{A'}$ (prompt decays)
 - $-M_{h'}$ in 0.8 10 GeV/c2
 - M_{Δ} in 0.25 3.0 GeV/c2
- Look in full data sample (521 fb⁻¹) for 3 A' in 3(II), 2(II) $\pi\pi$, II 2($\pi\pi$), 2($\mu\mu$)X, $\mu\mu$ eeX
- Translate 90% c.l. UL on cross sections to UL on $\varepsilon^2 \alpha_D$

Dark Higgs Limits

90% CL upper limit on α ε²

Limit on $\epsilon^2 = \alpha'/\alpha$ assuming $\alpha_D = \alpha_{em} = 1/137$

PRL 108, 211801 (2012)

Substantial improvement over previous limits. Constrain model space

Y. Kolomensky at Lomonosov Conference, Aug. 2015

Non Abelian Dark Sector, W'

arXiv:0908.2821 [hep-ex]

- Test h-scenario with at least A', h' and W'.
- Search in full data sample (536 fb⁻¹) for 4-lepton final states with 2 equal-mass lepton neutral pairs (ee)(ee), (ee)(μμ), (μμ)(μμ).
- Assume lepton universality.
- Upper Limits on cross sections ~ 20 60 ab(!)
 translate into

 $\varepsilon^2 \alpha_D$ (or $\varepsilon^2 \alpha_D / m_{A'}^4$) for $m_{A'} >$ (or <) Ecm.

25

Summary and outlook

- BABAR has made significant contributions to the emerging research on light hidden sector particles
 - Pushing down limits on A' with ISR technique.
 - Exploring generically the production of long lived neutral particles in e⁺e⁻ collisions and B decays.
 - Ruling out a wide parameter space region for an NMSSM-like A^0 boson, exploring all accessible final states (most recently the A^0 -> $c\bar{c}$ channel) with dark sector decays to invisible particles as spinoff.
 - Conducting h' and W' searches.
- Further progress is expected from Intensity Frontier experiments
 - e⁺e⁻ machines: recently BES III, especially Belle-II.
 - Beam dump experiments: at electron (e.g. HPS) and proton (SHiP project).

Backup

BABAR's Scientific Productivity

Continue harvesting scientific results from the BABAR dataset 551 papers published (as of 1-Aug-2015)
Significant number still in the pipeline
Recent highlights:

- Indirect searches for new physics (precision measurements):
 - Measurement of sin2β in B⁰→D^{(*)0}h⁰ (joint with Belle): arXiv:1505.04147, accepted to PRL
 - CPV in B mixing with dilepton events: PRL 114, 081801 (2015), arXiv:1411.1842
 - Measurement of radiative tau decays: PRD91, 051103 (2015), arXiv:1502.01784
 - See also: K. Flood, "Measurement of Angular Observables in the rare decay B→K*l+l- at BABAR", Monday Session H
- Direct searches for new physics (this talk)

Inflaton

F. Bezrukov, D. Gorbunov JHEP 1307 (2013) 140

Figure 3: Inflaton decay branching ratios (left plot) and inflaton lifetime (right plot); theoretical predictions for $m_{\chi} \simeq 1 - 2 \,\text{GeV}$ (thin dashed lines on the left plot and dotted lines on the right plot) suffer from significant QCD-uncertainties.

Signal PDF

• Mass uncertainty σ_m changes greatly with vertex m, r, boost

• But mass resolution function is quite stable wrt. the candidate's estimated σ_m

• So construct each event's PDF from its σ_m and the signal-MC resolution function histogram (obtained @ 12 mass points)

Highest-significance points

γ conversion,

 $m_{ee} < 10 \; \mathrm{MeV}$

- $m_{\mu\mu} = 0.212 \,\text{GeV}$:
 - -S = 4.7
 - 13 signal events
 - P-value = 4×10^{-4} with look-elsewhere effect in $m_{\mu\mu} < 0.37$ GeV
 - More than 50% of the candidates are in or near material regions
 - All have $0.2 GeV, where <math>e \mu$ discrimination is small.
 - Look like γ conversions
- $m_{\mu\mu} = 1.24 \text{ GeV}$:
 - S = 4.2
 - 10 signal events
 - P-value = 8×10^{-3} with look-elsewhere effect in $m_{\mu\mu} > 0.5$ GeV

Highest-significance points

γ conversion,

 $m_{ee} < 10 \; \mathrm{MeV}$

- $m_{\mu\mu} = 0.212 \text{ GeV}$:
 - -S = 4.7
 - 13 signal events
 - P-value = 4×10^{-4} with look-elsewhere effect in $m_{\mu\mu} < 0.37$ GeV
 - More than 50% of the candidates are in or near material regions
 - All have $0.2 GeV, where <math>e \mu$ discrimination is small.
 - Look like γ conversions
- $m_{\mu\mu} = 1.24 \text{ GeV}$:
 - S = 4.2
 - 10 signal events
 - P-value = 8×10^{-3} with look-elsewhere effect in $m_{\mu\mu} > 0.5$ GeV

CP-odd Higgs in NMSSM

- Y $\rightarrow \gamma A^0$, $A^0 \rightarrow f\overline{f}$, gg
- $A^0 = \cos\theta_A A_{MSSM} + \sin\theta_A A_{singlet}$
- Predicted BF depend on $\cos\theta_{\Delta}$, $\tan\beta$, $m_{\Delta0}$
 - > Scans of e.g.

BF(Y
$$\rightarrow$$
 A⁰) BF(A⁰ \rightarrow $\mu^+\mu^-$)

Rate accessible to BABAR

$Y(2S) \rightarrow \pi^{+}\pi^{-} Y(1S) \rightarrow \gamma A^{0}, A^{0} \rightarrow c\bar{c}$

Event selection

- 2 tracks (dipion), 1 photon, hadronic system (cc->D+X)
- Missing mass consistent with Y(1S)
- 5 (charm) × 2 (m) BDT to discriminate signal from background

Charm tag:

1.
$$D^0 \rightarrow K^- \pi^+$$

2.
$$D^0 \to K^- \pi^+ \pi^+ \pi^-$$

3.
$$D^0 \rightarrow K_S \pi^+\pi^-$$

4.
$$D^+ \rightarrow K^- \pi^+ \pi^+$$

5.
$$D^{*+} \rightarrow \pi^+ D^0$$
, $D^0 \rightarrow K^- \pi^+ \pi^0$

Backgrounds:

- 1S $\rightarrow \gamma gg$
- 1S \rightarrow X
- 2S \rightarrow X
- qq continuum

PRD 91, 071102 (2015)

- photon with E_{cm}>30 MeV
- Scan m_X

$$m_X^2 = (P_{e^+e^-} - P_{\pi^+\pi^-} - P_{\gamma})^2$$

- ➤ High mass [7.50 9.25] GeV/c2
- > Low mass [4.99 8.00]
- Exclude [8.95 9.10] to avoid (2S $\rightarrow \chi_h \rightarrow$ 1S) cascade

$Y(2S) \rightarrow \pi^{+}\pi^{-} Y(1S) \rightarrow \gamma A^{0}, A^{0} \rightarrow c\bar{c}$

Measurements

- background from global fits
- efficiency from 0.04 to 0.026 with ~10% systematics (cc hadronization dominant)
- resolution from 120 MeV to 8 MeV
- Local fits in ±10 resolution ranges
- steps < 0.3 resolution
 - signal PDF with fixed local parameters
 - background PDF 2nd order polynomial

PRD 91, 071102 (2015)

$Y(2S) \rightarrow \pi^{+}\pi^{-} Y(1S) \rightarrow \gamma A^{0}, A^{0} \rightarrow c\bar{c}$

PRD 91, 071102 (2015)

Biggest peaks are not significant. Derive 90% Upper Limits on BF(Y(1S) $\rightarrow \gamma$ A⁰) ×BF(A⁰ \rightarrow cc)

BF(Y(1S) $\rightarrow \gamma$ A°) ×BF(A° $\rightarrow c\overline{c}$) < [7.4 × 10⁻⁵ – 2.4 × 10⁻³] at 90% c.l.

FIG. 1. The m_R distribution of events with a dipion, charm, and photon tag before application of selection criteria based on the BDT output (see text). The solid circles indicate the on-resonance data. The open squares indicate the off-resonance data normalized to the on-resonance luminosity.

$Y(2S) \rightarrow \pi^+\pi^- Y(1S) \rightarrow \gamma A^0, A^0 \rightarrow ss, gg$

Event selection

- 2 tracks (dipion), 1 photon, hadronic system (not 2-body, gg and/or ss)
- Missing mass consistent with Y(1S)
- MLP against Y hadronic background

TABLE I. Decay modes for candidate $A^0 \rightarrow gg$ and $s\bar{s}$ decays, sorted by the total mass of the decay products.

Number	Channel	Number	Channel
1	$\pi^+\pi^-\pi^0$	14	$K^+K^-\pi^+\pi^-$
2	$\pi^+\pi^-2\pi^0$	15	$K^+K^-\pi^+\pi^-\pi^0$
3	$2\pi^+2\pi^-$	16	$K^\pm K^0_S \pi^\mp \pi^+ \pi^-$
4	$2\pi^+2\pi^-\pi^0$	17	$K^+K^-\eta$
5	$\pi^+\pi^-\eta$	18	$K^{+}K^{-}2\pi^{+}2\pi^{-}$
6	$2\pi^{+}2\pi^{-}2\pi^{0}$	19	$K^{\pm}K^{0}_{S}\pi^{\mp}\pi^{+}\pi^{-}2\pi^{0}$
7	$3\pi^{+}3\pi^{-}$	20	$K^+K^-2\pi^+2\pi^-\pi^0$
8	$2\pi^+2\pi^-\eta$	21	$K^+K^-2\pi^+2\pi^-2\pi^0$
9	$3\pi^{+}3\pi^{-}2\pi^{0}$	22	$K^{\pm}K_{S}^{0}\pi^{\mp}2\pi^{+}2\pi^{-}\pi^{0}$
10	$4\pi^+4\pi^-$	23	$K^+K^-3\pi^+3\pi^-$
11	$K^+K^-\pi^0$	24	$2K^{+}2K^{-}$
12	$K^\pm K^0_S \pi^\mp$	25	$par{p}ar{\pi}^0$
13 08 00	$K_{5}^{+}K^{-}2\pi^{0}$	26	$p_{\rm l}\bar{p}_{\rm c}\pi^+\pi^-$

PRD 88, 031701(R) (2013)

- photon with E_{cm}>200 MeV
- Fit constraining A⁰ and γ candidates to Y(1S) mass and beam spot. Hence $\sigma(m_{\Delta})^{\sim}100 \text{MeV/c}^2$.
- π^0 vetos

CP-odd Higgs (older results)

1,10 40	111000
$\Upsilon(2S,3S) \to \gamma A^0, A^0 \to \mu^+ \mu^-$	0.2
$\Upsilon(3S) \to \gamma A^0, A^0 \to \tau^+ \tau^-$	4.0
$\Upsilon(2S,3S) \to \gamma A^0, A^0 \to \text{hadrons}$	0.
$\Upsilon(1S) \to \gamma A^0, A^0 \to \chi \bar{\chi}$	1
$\Upsilon(1S) \to \gamma A^0, A^0 \to \text{invisible}$	7

 $\Upsilon(3S) \to \gamma A^0, A^0 \to \text{invisible}$

$$0.21 < m_A < 9.3$$
 $(0.3 - 8.3) \times 10^{-6}$
 $4.0 < m_A < 10.1$ $(1.5 - 16) \times 10^{-5}$

$$0.3 < m_A < 7.0$$
 $(0.1 - 8) \times 10^{-5}$ $m_\chi < 4.5 \,\text{GeV}$ $(0.5 - 24) \times 10^{-5}$

$$m_A < 9.2 \,\text{GeV}$$
 $(1.9 - 37) \times 10^{-6}$

$$m_A < 9.2 \,\text{GeV}$$
 $(0.7 - 31) \times 10^{-6}$

arXiv: 1209.1143 (B. Echenard)

Mode

Invisible Dark Photon: $e^+e^- \rightarrow \gamma + invisible$

Peaking background from $e^+e^-\rightarrow \gamma\gamma$, with one of the photons missing the EM calorimeter. Veto such events by detecting activity in the muon detector (IFR).

- $\Upsilon(3S) \rightarrow \gamma + \text{invisible}$ (arXiv:0808.0017)
- Require a single photon with E*,>2.2 GeV
- No charged tracks
- No additional energy in EMC above 100 MeV
- Missing momentum points to EMC
- No activity in IFR aligning with missing momentum
- No signal found: limits on ε of order O(10⁻³-10⁻²)
- Updated analysis in progress

Lomonosov-2015 New Results from BABAR

Invisible Dark Photon: $e^+e^- \rightarrow \gamma + invisible$

Lomonosov-2015 New Results from BABAR

Belle2 at SuperKEKb will take 40x more statistics Shut down for upgrade 2010.

Belle-II due to roll in mid 2015, followed by commissioning.

First physics data due 2017.

DM searches, including Higgsstrahlung analysis, will continue

Dark Sector

- Gauge boson of new U(1)' the A', with MeV-GeV mass
 P. Fayet PLB 95, 285(1980)
- Kinetic mixing with γ , A' couples to electric charge with strength ϵe
- A' couples to dark sector particles with α_D
- Unexplained cosmic ray observations
- Impacts g-2 puzzle
- Dark higgs h' expected ...

Recent review with references: R. Essig et al. arXiv: 1311.0029 [hep-ph]

Search for Dark Higgs

- Extension of the dark sector models: dark Higgs
 - Mass generation in dark sector
 - Mass can be low
 - Detect by Higgs-strahlung process e+e-→ A'h'
 - Decays to A' pairs
 - Multi-particle (multi-lepton) final state
 - © Clean detection, virtually no QED background

Lomonosov-2015 New Results from BABAR

Direct Search for Dark Sector

Look for e⁺e⁻ \rightarrow l⁺l⁻l⁺l⁻ final states (4e, 2e2 μ ,4 μ) as a function of two-lepton mass

Full BaBar dataset (~540 fb⁻¹)

$$\sigma(e^+e^- \to W'W' \to l^+l^-l'^+l'^-) < (25-60) \text{ ab}$$

Some of the smallest cross section ULs measured @ B-Factories

Y. Kolomensky at Lomonosov Conference, Aug. 2015