

Results and prospects from NA48 and NA62

Evgueni Goudzovski

(University of Birmingham)

eg@hep.ph.bham.ac.uk

on behalf of the NA62 collaboration

Outline:

- 1) K^{\pm} decay experiments at CERN: NA48/2 and NA62
- 2) Neutrino portal: heavy neutral leptons
- 3) Vector portal: the dark photon
- 4) Summary

Kaon experiments at CERN

Recent K[±] experiments

Experiment	NA48/2	NA62 (R _K phase)	NA62		
	(K^{\pm})	(K^{\pm})	(K ⁺)		
Data taking period	2003–2004	2007–2008	2015–		
Beam momentum, GeV/c	60	74	75		
RMS momentum bite, GeV/c	2.2	1.4	0.8		
Spectrometer thickness, X ₀	2.8%	2.8%	1.8%		
Spectrometer P _T kick, MeV/c	120	265	270		
M(K [±] $\rightarrow \pi^{\pm}\pi^{+}\pi^{-}$) resolution, MeV/c ²	1.7	1.2	0.8		
K decays in fiducial volume	2×10 ¹¹	2×10 ¹⁰	1.2×10 ¹³		
Main trigger	multi-track;	Min.bias + e [±]	Κ _{πνν} +		
	$K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$				
The NA62 experiment	The NA48 detector New detector		New detector		
$\bullet Main mask sells stime of 400 CM Vt is the descens DD (0.4+0.7) (40.41)$					
* Main goal: collection of 100 SM K ⁺ $\rightarrow \pi^+ \nu \nu$ decays, BK _{SM} =(9.1±0.7)×10 ⁻¹¹ .					
Buras et al., arXiv:1503.02693					

★ Current K⁺→ $\pi^+\nu\nu$ experimental status: BR = (1.73^{+1.15}_{-1.05})×10⁻¹⁰ from 7 candidates with expected background of 2.6 observed by BNL-E949. *PRL101 (2008) 191802*

The NA62 detector

- ★ Kinematic rejection factors (limited by beam pileup and tails of MCS): 5×10³ for K⁺→π⁺π⁰, 1.5×10⁴ for K→μ⁺ν.
- ♦ Hermetic photon veto: ~10⁸ suppression of $\pi^0 \rightarrow \gamma\gamma$.
- ✤ Particle ID (RICH+LKr+MUV): ~10⁷ muon suppression.

The NA62 detector

Physics data taking started in June 2015

Neutrino Portal: heavy neutral leptons

HNL: production searches

0.30

Heavy neutrino mass GeV/c^2

0.35

0.40

- Neutrino minimal SM (vMSM): three Peak search for $K^+ \rightarrow \mu^+ N$ at NA62 R_k phase: heavy sterile RH Majorana vs $(N_{1,2,3})$. Downscaled trigger: small data sample, DM candidate: $m_1 \sim 10 \text{ keV/c}^2$. ~10⁸ K⁺ decays in fiducial volume. HNLs $(m_2 \sim m_3 \sim 1 \text{ GeV/c}^2)$ observable Sensitivity is limited by backgrounds. • However sensitive above $m_N = 330 \text{ MeV/c}^2$. (1) via peak search: production in ✤ NA62: improved SES by factor ~500; meson decays; or low background (hermetic veto, K⁺ tagger); (2) decay search: e.g. $N \to \pi^{\pm} \ell^{\mp}$ signal region extended into lower m_N ; Asaka et al., PLB 631 (2005) 151 possibly a search for $K^+ \rightarrow e^+ N$. NA62 R_K phase (2007): K⁺ \rightarrow µ⁺N search HNL production searches $\pi^+ \rightarrow \mu^+ N$ Signal region: in K⁺ and π^+ decays **VSI**, 1981 $m_N > 270 MeV/c^2$ 10⁵ NA62- R_{k} expected 10^{-5} 10⁴ corresponding to $K^+ \rightarrow \mu^+ N$ 10^{-6} **KEK**, 1982 10^{3} 10^{-7} NA62-R_K SES AA $K^+ \rightarrow \mu^+ \nu(\gamma)$ $K^+ \rightarrow \mu^+ N$ BNL E949, 2015 $K^+ \rightarrow \pi^0 \mu^+ \nu$ 10^{-8} 10² Nuon halc 10^{-9} 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 -0.02Squared missing mass, $(GeV/c^2)^2$ 0.10 0.15 0.20 0.00 0.05 0.25
- E. Goudzovski / CERN, 8 October 2015

HNL production & decay: $K^{\pm} \rightarrow \pi^{\mp} \mu^{\pm} \mu^{\pm}$

↔ Precision limited by background from $\pi^{\pm} \rightarrow \mu^{\pm} \nu$, despite SES $\approx 3 \times 10^{-11}$.

- ★ Re-analysis (3-track vertex) in progress: reduced background, a scan in m_N and τ_N. Expected sensitivity to BR(K⁺→μ⁺N)×BR(N→μ⁺π⁻): ~10⁻¹⁰ for τ_N<10⁻⁹s. Searches for K⁺→π⁺X, X→μ⁺μ⁻ and K⁺→μ⁺X, X→π⁺μ⁻ can also be performed.
- * NA62: a dedicated $\mu\mu$ trigger; displaced vertex analysis possible (τ_N up to 10⁻⁷s).8

Vector Portal: the dark photon

DP production in $\pi^0 \rightarrow \gamma A'$ **decay**

Batell, Pospelov and Ritz, PRD80 (2009) 095024

$${\cal B}(\pi^0 o \gamma A') = 2 arepsilon^2 \left(1 - rac{m_{A'}^2}{m_{\pi^0}^2}
ight)^3 {\cal B}(\pi^0 o \gamma \gamma)$$

- Two unknown parameters:
 mass (m_{A'}) and mixing (ε²).
- Sensitivity to DP for $m_{A'} < m_{\pi 0}$.
- ★ Loss of sensitivity to $ε^2$ as $m_{A'}$ approaches $m_{π0}$, due to kinematical suppression of the $π^0 \rightarrow γA'$ decay.

DP decays into SM fermions

NA48/2: the π^0_D sample

Two exclusive selections

- $K^{\pm} \rightarrow \pi^{\pm} \pi^0{}_D$ selection:
- $|m_{\pi\gamma ee} m_{K}| < 20 \text{ MeV/c}^{2};$
- $|m_{\gamma ee} m_{\pi 0}| < 8 \text{ MeV/c}^2;$
- no missing momentum.
- K[±]→ $\pi^0_D \mu^{\pm} \nu$ selection: • $m_{miss}^2 = (P_K - P_\mu - P_{\pi 0})^2$ compatible with zero;
- $|m_{\gamma ee} m_{\pi 0}| < 8 \text{ MeV/c}^2;$
- missing total and transverse momentum.

Reconstructed π^0_{D} decay candidates:

- $N(K_{2\pi D}) = 1.38 \times 10^7$,
- $N(K_{\mu 3D}) = 0.31 \times 10^7$,
- total = 1.69×10^7 .

 K^{\pm} decays in fiducial region: N_K = (1.57±0.05) ×10¹¹.

NA48/2: search for DP signal

- range: 9 MeV/c²≤m_{A'}<120 MeV/c²;
- mass step $0.5\sigma_m$, signal window $\pm 1.5\sigma_m$;
- DP mass hypotheses tested: 404.

Local signal significance never exceeds 3σ : no DP signal is observed.

E. Goudzovski / CERN, 8 October 2015

The obtained limits are background limited: 2–3 orders of magnitude above single event sensitivity

NA48/2: dark photon in π^0 decays

PLB746 (2015) 178

- Improvement on the existing limits in the m_{A'} range 9–70 MeV/c².
- Most stringent limits are at low m_A, (kinematic suppression is weak).
- Sensitivity limited by irreducible π⁰_D background: upper limit on ε² scales as ~(1/N_K)^{1/2}, modest improvement with larger samples (e.g. at NA62).
- ✤ If DP couples to quarks and decays mainly to SM fermions, it is ruled out as the explanation for the anomalous (g-2)_µ.
 - Sensitivity to smaller ε² with displaced vertex analysis is under investigation.

Prospects for $K^{\pm} \rightarrow \pi^{\pm}A'$, $A' \rightarrow l^{+}l^{-}$

Comparison of $(K^{\pm} \rightarrow \pi^{\pm}A', A' \rightarrow e^{+}e^{-}, m_{A'} > m_{\pi 0})$ vs $(\pi^{0} \rightarrow \gamma A', A' \rightarrow e^{+}e^{-}, m_{A'} < m_{\pi 0})$:

- ★ Lower irreducible background: $BR(K^{\pm} \rightarrow \pi^{\pm}e^{+}e^{-}) \sim 10^{-7} \text{ vs } BR(\pi^{0}_{D}) \sim 10^{-2}$.
- ↔ Higher acceptance (×4), favourable K/π^0 flux ratio (×4).
- ★ Therefore the expected BR limits: $BR(K^{\pm} \rightarrow \pi^{\pm}A') \sim 10^{-9}$ vs $BR(\pi^{0} \rightarrow \gamma A') \sim 10^{-6}$.
- ♦ However BR(K[±]→ π^{\pm} A')/BR(π^{0} →γA')~10⁻⁴, expected ε² limits are ε²~10⁻⁵.

$K^{\pm} \rightarrow \pi^{\pm} A', A' \rightarrow invisible$

- ✤ NA62 physics data taking started in 2015.
- ✤ NA62 is capable of improving the current limits on:
 - ✓ NHL production in K⁺ decays, 0.1 GeV<m_N<0.4 GeV.</p>
 - ✓ Possibly HNL decays, 0.4 GeV<m_N<1.5 GeV?</p>
 - ✓ Neutral particles ($\chi \rightarrow l^+l^-$) with $m_{\chi} < 0.35$ GeV and $\tau_{\chi} < 10^{-7}$ s.
 - ✓ LFV and LNV in K⁺ and π^0 decays.
 - ✓ DP production in K⁺ and π^0 decays (0.01 GeV<m_{A'}<0.35 GeV), assuming both visible (A'→l⁺l⁻) and invisible A' decays.
- Further sensitivity studies (axions, inflatons) are in progress.
- ✤ New ideas are very welcome!

NA62 & SHiP design parameters

Primary beam for both NA62 and SHiP: 400 GeV/c SPS protons

	NA62	SHiP
	(running experiment)	(proposal)
Years of operation	3	5
POT per SPS spill	3×10 ¹²	4×10 ¹³
POT total	5×10 ¹⁸	2×10 ²⁰
Decay volume (m ³)	260 m ³	1780 m ³
Decay volume distance to target	104–183 m	64–124 m
Decay volume pressure (bar)	10 ⁻⁹ bar	10 ⁻⁶ bar
Halo muon rate in spectrometer	6 MHz	few kHz
Straw chamber area	0.06m <r<1.05m< td=""><td>R₁=5m, R₂=10m</td></r<1.05m<>	R ₁ =5m, R ₂ =10m

LFV in K[±] and π^0 decays

Mode	UL at 90% CL	Experiment	Reference
$K^+ ightarrow \pi^+ \mu^+ e^-$	$1.3 imes10^{-11}$	BNL E777/E865	PRD 72 (2005) 012005
$K^+ ightarrow \pi^+ \mu^- e^+$	$5.2 imes10^{-10}$		
$K^+ ightarrow \pi^- \mu^+ e^+$	$5.0 imes10^{-10}$	BNL E865*	PRL 85 (2000) 2877
$K^+ ightarrow \pi^- e^+ e^+$	$6.4 imes10^{-10}$]		
$(K^{\pm}) \rightarrow \pi^{\mp} \mu^{\pm} \mu^{\pm}$	$1.1 imes10^{-9}$ (CERN NA48/2	PLB 697 (2011) 107
$K^+ \rightarrow \mu^- \nu e^+ e^+$	$2.0 imes10^{-8}$	Geneva-Saclay	PL 62B (1976) 485
$K^+ ightarrow e^- u \mu^+ \mu^+$	no data		
$\pi^0 ightarrow \mu^+ e^-$	$3.6 imes10^{-10}$	FNAL KTeV	PRL 100 (2008) 131803
$\pi^0 o \mu^- e^+$	$3.6 imes10^{-10}$		

* CERN NA48/2 sensitivities for these three modes are similar to those of BNL E865

Expected NA62 single event sensitivities: $\sim 10^{-12}$ for K[±] decays, $\sim 10^{-11}$ for π^0 decays.

✤ NA62 is capable of improving on all these decay modes.

Sensitivity will depend on the trigger selectivity.