Simulation, Reconstruction and Higgs Analyses at CEPC

Manqi

and the

Simulation, key ingredients

SM Higgs observables

- From 1M Higgs: Direct measurements
 - Mass, spin, σ(ZH)
 - Branching ratios (b, c, т, g, W, Z)
 - Branching ratios (gamma, mu)

+

- Invisible Branching ratio
- $\sigma(vvH)^*Br(H\rightarrow bb)$
- Derived: width and couplings

Mode	$b\overline{b}$	$c\overline{c}$	gg	WW*	$\mu^+\mu^-$	$\tau^+\tau^-$	ZZ^*	$\gamma\gamma$	$\mathrm{Z}\gamma$
BR (%)	57.8	2.7	8.6	21.6	0.02	6.4	2.7	0.23	0.16
	g(Hbb), g(Hcc), g(Htt), g(HWW)/Γ _н , g(Hμμ),			g(Нтт), (g(HZZ)/Г _н	, g(HWW)/g(Htt)		

Conceptual detector design

MDI - Forward tracking system changed w.r.t ILD Saclay Discussion

Generators

- Whizard: SM Higgs signal & background (2 fermion, 4 fermion including radiation corrections), Supported by Whizard team
- Madgraph: BSM models (FCNC, exotic Higgs decay, etc.)

Saclay Discussion

Reconstruction

Table 3.4Expected performance of CEPC detector at object level (within geometry acceptance). For the flavortagging, the b/c tagging efficiency should preserve a purity of 80% at Z pole sample with hadronic final states

Tracking: Kalman ==			
Fitter based Clupatra	Charged particle tagging efficiency ($E > 10 \text{ GeV}$)	99.5%	>99%
(ILC tool)	Muon identification efficiency ($E > 10 \text{ GeV}$)	98.5%	99%
	Electron identification efficiency ($E > 10 \text{ GeV}$)	99.5%	99%
Arbor	Photon tagging efficiency ($E > 1 \text{ GeV}$)	95%	99% for E>5GeV γ
	Neutral Hadron tagging efficiency ($E > 5 \text{ GeV}$)	90%	NAN
	Jet Energy resolution	3 - 4%	4%
Flavor tagging:	b-tagging efficiency	90%	87%
	c-tagging efficiency	60%	40%

- Fully validated reconstruction chain
- PFA oriented: object finding efficiency & Jet Energy Resolution

Tracking

Reconstruction Efficiency of Charged Particles

Tracker Performance at different Polar angle Fig. 6. Tracker Performance at different TPC Radius Fig. 4.

Reproduced the performance at ILD Saclay Discussion

PFA: Jet Energy Resolution & Lepton ID

Invariant mass of vvH events: Still tuning...

- PFA at CEPC: physics object finding
 - Ultimate goal: 1-1 correspondence between incident - reconstructed particle

Flavor tagging

9

B-tagging almost reach the required performance; C-tagging performance is lower than required, tuning on going;

Rejection power: define as 1/ε – 1 for background 07/07/2015 Operational Simu-Reco Chain

Higgs tagging via $Z \rightarrow di$ lepton

Recoil mass: clean signal, portal to exotic decay, etc

Key ingredients: Lepton identification efficiency & Track momentum resolution; Bremstrhalung photon recovery for di-electron channel

Strictly Model independent analyses with full simulation Full set of SM background (processed with CEPC Fast Simulation tool) 07/07/2015 Beam energy spread considered for the di-muon channel.

Br(H \rightarrow bb, cc, gg) via Z \rightarrow µµ

Jet Flavor tagging

Fast simulation - geometry optimization

PFA based, including reconstruction efficiencies (polar angle/energy dependent), resolution for different types of particles

Applied to all background samples

Additional parametrization for different tracker sizes: for optimization

Left plot: Validation of Fast simulation on Higgs recoil mass spectrum Right plot: Mass and Xsec resolution with 500 fb⁻¹ integration luminosity via di-muon channel

Higgs rare decays

Br($H \rightarrow \gamma \gamma$): photon identification efficiency & ECAL intrinsic resolution

Br(H \rightarrow µµ):

Muon identification & Track Momentum resolution

CEPC Higgs Analysis: Status

	di-muon	di-electron	di-neutrino	di-jets
σ(ZH)			-	
Мн				
σ(ZH)*Br(H→bb)				
σ(ZH)*Br(H→cc)				
σ(ZH)*Br(H→gg)				
σ(ZH)*Br(H→WW)				
$\sigma(ZH)^*Br(H\rightarrow ZZ)$				
σ(ZH)*Br(H→ττ)				
σ(ZH)*Br(H→γγ)				
σ(ZH)*Br(H→μμ)				
σ(vvH)*Br(H→bb)	-	-		-
Br(H→invisible)			-	
Br(H→exotic)				

Signal with CEPC Full Simulation, Bkgrd with Fast Simulation

CEPC Fast Simulation

07/07/2015

Extrapolated from ILC/FCC-ee results

Toward CDR

- Simulation: •
 - 1 2 benchmark detector model(s)
 - Key parameter optimization: B field, Tracker layout, Size, Granularity, etc
- **Reconstruction:** •
 - Adjust to new geometries
 - **Optimization & developments**
- Analysis: •
 - Cover Higgs Analyses & SM measurement _ at full simulation level

Example topics

- TPC Related:
 - Feasibility study at Z pole
 - Geometry re-design & optimization, reconstruction chain adjustment
 - Systematic study: B-Field in-homogeneity & monitoring
- Physics Analysis:
 - Higgs:
 - SM
 - Exotic decay measurements with recoil mass method
 - Z pole & SM
 - Neutrino generation (first use free samples at Higgs run...)

• ...

Summary

- Fully validated simulation reconstruction chain: thanks to ILC/ILD!
 - Ongoing efforts
 - Flavor tagging
 - Jet Clustering & Jet Energy Resolution
 - Fast simulation toolkit for Z pole physics
 - Iterating until converge to an optimized design
- Higgs measurements at CEPC:
 - Benchmark measurements explored
- Toward CDR
 - Many interesting tasks ahead
 - Weekly Simulation-Analysis Meeting (Monday 9 am Paris Time)

Thanks

Backup

ILD, the starting point of CEPC detector

A detector measures all the physics objects (lepton, photon, tau, Jet, MET, ...) with high efficiency/precision

High precision VTX located close to IP: b, c, tau tagging

High precision tracking system

PFA oriented calorimetry system ($\sim o(10^8)$ channels): PID, jet energy resolution, etc.

Arbor PFA, principle

Original idea from Henri Videau, in the ALEPH studies

07/07/2015

Saclay Discussion

Computing

Computing: Centralized Farm + Distributed Computing

Goal: fully simulated Higgs signal samples (done) + SM background samples (on going)

Thus, we reached...

Table 3.12 Estimated precisions of Higgs boson property measurements at the CEPC. All the numbers refer to relative precision except for M_H and BR($H \rightarrow inv$) for which ΔM_H and 95% CL upper limit are quoted respectively.

ΔM_H	Γ_H	$\sigma(ZH)$	$\sigma(\nu\nu H) \times \mathrm{BR}(H \to bb)$
5.9 MeV	2.8%	0.51%	2.8%
Decay mode		$\sigma(ZH) \times BR$	BR
$H \rightarrow bb$		0.28%	0.57%
$H \to cc$		2.2%	2.3%
$H \to gg$		1.6%	1.7%
$H \to \tau \tau$		1.2%	1.3%
$H \rightarrow WW$		1.5%	1.6%
$H \rightarrow ZZ$		4.3%	4.3%
$H \to \gamma \gamma$		9.0%	9.0%
$H ightarrow \mu \mu$		17%	17%
$H \to \mathrm{inv}$		_	0.28%

Outline

- Introduction: Physics at CEPC
- Status: Simulation Studies at CEPC Pre-CDR
 - Generator
 - Simulation
 - Reconstruction
 - Computing & Generation
 - Analysis: Status & High light
- Summary

Team members

- ٠
- ٠
- ٠
- Substantiation: B. Liu, Z. Chen (IHEP)
 Full Simulation: Y Xu (NanKai University), etc. technologies.
 'econstruction:
 Tracking: B. Li (Tsinghua University))
 Particle Flow
 M. Ruan, B. Ma, D. & (IHEP Of Contended on the of t
 - Flavor tagging: G CFIPlus
- Analysis: •
 - FTEs with students from IHEP, Peking University, Wuhan University, Shandong University, USTC, UCAS, HongKong University, etc
- Computing: T. Yan, etc • 07/07/2015

$Br(H \rightarrow bb, cc, gg)$

- Key ingredients: Lepton tagging, Jet Clustering & Jet Flavor tagging
- Analysis status
 - Fully simulated Higgs signal & Fast simulated Ilqq background
 - Method:
 - Force everything besides two leading leptons into 2 jets
 - Event selection on leptons and jets kinematics
 - Flavor tagging: classify selected events into all possible flavor combination (bb, cc, gg, bc, bg, cg)
 - Resolve back the signal and background yields (only bb, cc, gg numbers)
 - C-tagging efficiency: need to be improved.

CEPC Simulation

Geant 4 Simulation team: Y. Xu (NanKai U) etc Full access to geometry editing/validation.

CMS Experiment at LHC, CERN Data recorded: Thu Jan 1 01:00:00 1970 CEST Run/Event: 1 / 1201 Lumi section: 13

Arbor, a valid algorithm for pp collisions 140 PU event reconstructed at 2 min/evt

Flavor tagging

- Gang: LCFI is working now – need to see if it works as expected
- Jet Clustering is also an issue...

	b	С	udsg	(
b	81.8%	9.3%	8.9%	(
С	9.0%	50.2%	40.7%	(
udsg	0.96%	1.9%	97.2%	

Higgs analysis: Model independent tagging of Higgs boson

Higgsstrahlung event with Z decays into visible final state:

Absolute tagging of Higgs signal without measuring Higgs decay final state: Inclusive sigma(ZH) measurement

Anchor for all the absolute Higgs measurements

Higgs tagging via Z→visible channel

Di lepton channel:

Strictly Model independent analysis

Full set of SM background (processed with CEPC Fast Simulation tool) Beam energy spread considered for the di-muon channel.

	Z decay mode	ΔM_H (MeV)	$\Delta\sigma(ZH)/\sigma(ZH)$	$\Delta g(HZZ)/g(HZZ)$
Di jot channal:	ee	13	2.1%	
Di jel channel.	$\mu\mu$	6.6	0.9%	
Fast simulation	$ee + \mu\mu$	5.9	0.8%	0.4%
Systematic control would be an key issue				
Systematic control would be all key issue.	qq		0.65%	0.32%
	$ee + \mu\mu + qq$		0.51%	0.25%

Higgs tagging via Z→di lepton: Higgs exotic decays

Limit from Higgs total width: 2.8%

Specify Higgs decay final state would leads to significantly better result.

Test a set of benchmark Higgs exotic decay (H->invisible, H->bb + MET, H->bbbb):

5 sigma deviation expected with $Br(H\rightarrow exo) \sim 0.1\%$

Br(H→WW)

Table 3.8 Expected precision of the $\sigma(ee \rightarrow ZH) \times BR(H \rightarrow WW^*)$ measurement, assuming an integrated luminosity of 5 ab⁻¹.

From the recoil mass spectrum: tagging decay final states \rightarrow Higgs decay branching ratios

Channel	Precision	Comment
$Z \to \mu \mu, H \to WW^* \to \ell \nu qq, \ell \ell \nu \nu$	4.9%	CEPC Full Simulation
$Z \to ee, H \to WW^* \to \ell \nu q q, \; \ell \ell \nu \nu$	7.0%	Estimated
$Z \rightarrow \nu \nu, H \rightarrow WW^* \rightarrow qqqq$	2.3%	Extrapolated from ILC result
$Z \to qq, H \to WW^* \to \ell \nu qq$	2.2%	Extrapolated from ILC result
Combined	1.5%	

Br(H \rightarrow bb, cc, gg) via Z \rightarrow µµ

Key ingredients: Lepton tagging, Jet Clustering & Jet Flavor tagging

Saclay Discussion

Di-electron channel

07/07/2015

Saclay Discussion

Higgs tagging via $Z \rightarrow di$ jet channel, Fast simulation

Control of the systematic (on in-homogeneity of the efficiency for different Higgs decay final State) is essential: a key task for future analysis

Z decay mode	ΔM_H (MeV)	$\Delta\sigma(ZH)/\sigma(ZH)$	$\Delta g(HZZ)/g(HZZ)$
ee	13	2.1%	
$\mu\mu$	6.6	0.9%	
$ee + \mu\mu$	5.9	0.8%	0.4%
		0.65%	0.32%
$ee+\mu\mu+qq$		0.51%	0.25%

07/07/2015

		Resolution assumption: $\frac{\delta E}{E} = \frac{R}{\sqrt{E}} \oplus 1\%$			
Channel		R = 10%	R=16%	R = 20%	
$Z \to \mu^+ \mu^-$	Signal/efficiency	$62\pm18/42.2\%$	62 ± 19	59 ± 19	
	Background	832 ± 33	831 ± 34	826 ± 33	
	$\Delta(\sigma \times BR)/\sigma \times BR$	29.0%	30.6%	32.2%	
$Z \to \tau^+ \tau^-$	Signal/efficiency	$58\pm18/41.9\%$	56 ± 18	54 ± 19	
	Background	760 ± 32	757 ± 32	762 ± 32	
	$\Delta(\sigma \times BR)/\sigma \times BR$	31.0%	32.1%	35.2%	
$Z \rightarrow \nu \nu$	Signal	$334\pm40/57.5\%$	339 ± 46	342 ± 51	
	Background	7059 ± 91	7053 ± 94	7047 ± 96	
	$\Delta(\sigma \times BR)/\sigma \times BR$	12.0%	13.6%	14.9%	
$Z \rightarrow qq$	Signal	$594 \pm 67/34.3\%$	582 ± 83	575 ± 94	
	Background	13053 ± 130	12831 ± 138	12566 ± 144	
	$\Delta(\sigma \times BR)/\sigma \times BR$	11.3%	14.3%	16.4%	
Combined	$\Delta(\sigma \times BR)/\sigma \times BR$	7.7%	9.0%	10.0%	

Table 3.10 Expected yields for signal and backgrounds in $H \rightarrow \gamma \gamma$ channel, normalized to 5 ab⁻¹.

Higgs width measurement

- Higgs total width:
 - Indispensable for determine the absolute couplings between Higgs & its decay final state particle
 - $g^2(HXX) \sim \Gamma_{H \to XX} = \Gamma_{total} *Br(H \to XX)$
 - Limit to any partial width contributed from any exotic decay
- Two alternative methods at 250 GeV electron-positron collision
 - $H \rightarrow ZZ$ channel:
 - Inclusive Xsec measurement ($\sigma(ZH) \sim g^2(HZZ)$)
 - $\sigma(ZH)^*Br(H \rightarrow ZZ) \sim g^4(HZZ)/\Gamma_{total}$
 - W fusion channel:
 - $\sigma(ZH) \sim g^2(HZZ)$
 - $\sigma(ZH)^*Br(H\rightarrow bb) \sim g^2(HZZ)^*g^2(Hbb)/\Gamma_{total}$
 - $\sigma(ZH)^*Br(H \rightarrow WW) \sim g^2(HZZ)^*g^2(HWW)/\Gamma_{total}$
- $07/07/2015 \cdot \sigma(vvH)^*Br(H \rightarrow bb) \sim g^2(HV)^*g^2(dsbb)/\Gamma_{total}$

Higgs width measurement

Br(H->ZZ): relative error of 6.9% achieved with ZH->ZZZ*->vv(Z)llqq(H) final states. Extrapolation of TLEP result leads to 4.3% relative error

 $\sigma(vvH)^*Br(H->bb)$: relative error of 2.8%

A combined accuracy of 2.8% for the Higgs total width measurements 07/07/2015 Saclay Discussion